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Theory has recently shown that corporate policies should depend on firms’ exposure to
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financing choices, that firms with a higher estimated correlation between shocks implement
riskier policies, and that the sign of this correlation determines the cash flow sensitivity of
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explicitly modeling firms’ exposure to permanent (long-lived) and transitory
(short-lived) cash flow shocks when analyzing corporate policies. Indeed, while
transitory shocks affect immediate cash flows, they are uninformative about
future expected profitability. By contrast, permanent shocks affect not only a
firm’s immediate productivity and cash flows but also its future productivity
and cash flows.1 While the decomposition of shocks between transitory and
permanent components has been used productively in many areas of economics,
it has been largely neglected in empirical corporate finance.2 This is surprising
given that theory shows corporate decisions should depend not only on the level
of risk but also on its composition, as captured by firms’ exposure to long- and
short-lived shocks and the correlation between these shocks.

The objective of this paper is to start filling the existing void. We do
so in four successive steps. First, we provide evidence that a majority of
firms’ operating cash flows are subject to permanent (long-lived, nonstationary)
shocks, thereby providing support for cash flow models used in recent dynamic
corporate finance models. Second, since permanent and transitory shocks are
not separately observable, we develop a novel filter to decompose the cash flow
shocks of publicly traded U.S. firms into permanent and transitory components
and estimate their primitive parameters. Third, we provide granular estimates
of cash flow risk parameters—that is, firms’ exposure to short- and long-lived
cash flow shocks and the correlation between these shocks—for a large fraction
of the Compustat universe since the 1970s. Fourth, we show that the estimated
parameters are strongly related to corporate liquidity and financing choices,
that firms with a higher estimated correlation between shocks implement riskier
policies, and that the sign of this correlation determines the cash flow sensitivity
of cash, as predicted by theory.

We begin our empirical analysis by testing whether firm cash flow shocks
include a permanent nonstationary component, as assumed in most recent
models of investment, financing, liquidity, or compensation policies. To this
end, we use two standard unit root tests, the Augmented Dickey–Fuller (ADF)
and the Kwiatkowski et al. (1992) (KPSS) tests, which we implement on the
individual cash flows of over 10,000 Compustat firms between 1971 and 2018.

1 Many cash flow shocks are transitory and do not affect long-term prospects. Examples include temporary changes
in demand, delays in customer payments, machine breakdowns, or supply chain disruptions. But long-term cash
flows also change over time due to various firm, industry, or macroeconomic shocks that are of permanent nature.
Examples include changes in technology or in consumer preferences.

2 A number of asset pricing papers (see, e.g., Cochrane, 1994, Cohen, Gompers, and Vuolteenaho, 2002, Bansal,
Dittmar, and Kiku, 2008, Garleanu, Panageas, and Yu, 2012) use such a decomposition to analyze stock returns
and risk premia on stocks. This decomposition is also used in market microstructure to analyze price efficiency
(see, e.g., Glosten and Harris, 1988, Brennan and Subrahmanyam, 1996, Boehmer and Wu, 2013). The literature
on income processes also often seeks to decompose shocks into permanent and transitory components; see,
e.g., Blundell, Pistaferri, and Preston (2008), Meghir and Pistaferri (2004), or Gottschalk and Moffitt (2009).
The decomposition of income shocks between permanent and transitory components has found interesting
applications in the life-cycle portfolio choice literature; see, e.g., Cocco, Gomes, and Maenhout (2005). In
the time series literature, the permanent-transitory model is known as the unobserved component decomposition,
in which the permanent part is the trend and the transitory component is named the cyclical innovation; see
Hamilton (1994, Chapter 17).
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Both tests reject stationarity and strongly suggest that a majority of firms’
operating cash flows are, indeed, subject to permanent shocks.

Assessing the importance of permanent and transitory shocks for corporate
policies faces two challenges. First, one needs to be able to identify permanent
shocks separately from transitory shocks. Second, one needs to obtain reliable
and granular estimates of the cash flow risk parameters to relate these to
firm policies. To address these challenges, we estimate a canonical cash flow
model that nests as special cases most of the cash flow models used in the
recent dynamic investment, financing, liquidity, or compensation (contracting)
research. In this model, firm cash flows are subject to profitability shocks that are
permanent in nature. In addition, for a given level of profitability, cash flows are
subject to short-term shocks, which may be purely transitory or correlated with
permanent shocks.3 Cash flow risk is therefore captured by the firm’s exposure
to permanent shocks, its exposure to short-term shocks, and the correlation
between these shocks. Importantly, positive correlation reduces risk as the
firm is more likely to generate positive cash flows after positive productivity
shocks have increased firm value. To identify potentially correlated permanent
and short-term shocks, we develop a novel Kalman filter that is derived from
this theoretical structure. We then use our filtering technique and maximum
likelihood to estimate from panel data the parameters driving the cash flow
shocks—that is, the volatilities of permanent and short-term shocks as well as
their correlation—that best explain observed firm cash flows.

Our estimation of the parameters characterizing cash flow risk yields
three striking results. First, permanent and short-term shocks are negatively
correlated for most firms, suggesting large hedging needs. Second, firms that
are naturally hedged due to a positive shock correlation tend both to choose
riskier policies (e.g., take on more debt) and to have lower overall risk than
other firms (i.e., have a lower asset or equity return volatility and a larger
distance to default). By contrast, firms with a higher estimated volatility
of permanent or transitory shocks adopt safer policies and yet are riskier.
Third, our parameter estimates exhibit remarkable cross-sectional variation.
For example, we estimate an interquartile range between 32% and 131% for the
permanent shock volatility and between 12% and 60% for the temporary shock
volatility. These estimates of volatilities are much more heterogeneous across
the Compustat panel than the proxy used in prior research for the precautionary
motive to hold cash, namely the industry cash flow volatility (see, e.g., Opler
et al., 1999; Bates, Kahle, and Stulz, 2009; Graham and Leary, 2018). We also
show that the joint distribution of these three estimates implies asset return

3 In pioneering work, Froot, Scharfstein, and Stein (1993) show that a firm’s hedging policy varies dramatically
depending on whether price shocks, which are typically short-lived, are positively or negatively correlated with
longer-lasting investment opportunities. Correlation between short- and long-term shocks in the literature is
indeed generally operationalized by the correlation between industry-specific investment and cash flow (see,
e.g., Duchin, 2010, Acharya, Almeida, and Campello, 2007). Our cash flow model provides an alternative way
to operationalize this correlation that requires weaker identifying assumptions.
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volatilities that match the actual asset return volatilities of the firms in our
sample.

Because the estimated parameters characterize cash flow risk and hedging
needs, it is natural to explore how they relate to liquidity management policies.
Our focus on liquidity management is further motivated by the central role
of cash reserves and access to liquidity in ensuring firm resilience to cash
flow shocks, as illustrated by the COVID-19 crisis. Due to the precautionary
role of cash, models of liquidity management predict that target levels of cash
reserves should increase with cash flow risk and hedging needs (see, e.g.,
Bolton, Chen, and Wang, 2011 or Décamps et al., 2017). In these models, firms
build up cash reserves toward their target level either by retaining earnings or by
raising outside equity and keeping part of the proceeds in cash reserves. In our
empirical analysis, we thus focus on these two separate mechanisms to manage
cash reserves. As will become clear, our tests do not require estimating the
target level of cash reserves. As a result, they are unaffected by the coefficient
biases that stem from trying to measure unobservable variables. Yet, because
the predictions that we take to the data take the exact form of the tests that we
execute, the connection between theory and tests is tight.

One way for firms to increase their cash reserves and their resilience to
shocks is to retain earnings. There is considerable debate in the literature about
the sign of the cash flow sensitivity of cash savings. Almeida, Campello, and
Weisbach (2004) argue and provide evidence that the sensitivity is positive or
zero, depending on firms’ financing constraints and hedging needs. By contrast,
Riddick and Whited (2009) show that this sensitivity should be negative when
productivity shocks are persistent and find empirically that it is on average
negative. Décamps et al. (2017) sharpen the prediction and demonstrate that
the cash flow sensitivity of cash should be positive when the correlation between
permanent and short-term cash flow shocks is positive, and negative otherwise.
Indeed, when this correlation is positive, positive (short-term) cash flow shocks
are more likely to occur simultaneously with positive (long-term) productivity
shocks that increase both firm value and the marginal value of cash and, as a
result, firms’ incentives to save. We run various tests to verify this prediction
and find that the cash flow sensitivity of cash does switch sign depending on the
correlation between permanent and short-term shocks. Strikingly, the estimated
sensitivities are all highly statistically significant, and all exhibit the predicted
sign.

Another way for firms to replenish cash reserves is to raise new equity,
as empirically shown by Kim and Weisbach (2008) or McLean (2011) and
theoretically argued in Décamps et al. (2011) or Bolton, Chen, and Wang
(2011). Theory predicts that firms with high permanent or transitory shock
volatility should have larger (precautionary) cash reserves and issue larger
amounts of new equity. In addition, they should raise equity more frequently.
By contrast, firms with a high correlation between permanent and short-term
cash flow shocks are more naturally hedged and should therefore hold smaller
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cash reserves and issue smaller amounts of equity at a lower frequency. Our
empirical analysis provides strong support for these predictions. Notably, we
find a positive and significant relation between the size or frequency of equity
issues and the volatility of permanent cash flow shocks. We further find that
firms issue less equity when the correlation between short-term and permanent
shocks is high. These results are again highly statistically significant and apply
to both the size and frequency of equity issues. Our empirical tests additionally
show that permanent cash flow volatility is more important than transitory cash
flow volatility in explaining the cross-sectional variation in equity issuance
activity, demonstrating the importance of incorporating permanent shocks in
dynamic corporate finance models.

As shown by the recent COVID-19 crisis, firms may also consider issuing
debt to build up their cash reserves. Our estimates can help answer whether
debt-financed cash savings policies, such as the response to the COVID shock,
are common or an exception to the norm. For that purpose, we explore the
joint determination of equity and debt issuance as a function of our estimated
cash flow risk parameters. We find that all the results for equity issues are
weakened if we define the dependent variable as “external finance”—that
is, the sum of equity and debt issues. Treating each policy separately, and
estimating both policies simultaneously, we confirm earlier findings that the
frequency and amount of equity issued decrease with the correlation between
shocks and increase with their volatilities, but fail to reject that long-term debt
frequency and volume of issuance are not related to the same risk parameters.
Our results therefore suggest that firms resorted to long-term debt as a last
resort in extremely unusual circumstances during the COVID-19 crisis, instead
of using debt as a normal policy lever to manage liquidity.

Our paper relates to the growing theoretical literature on the effects
of permanent and transitory shocks on corporate policies. Gorbenko and
Strebulaev (2010) develop a dynamic capital structure model in which cash
flows are subject not only to permanent shocks, as in Leland (1998), but
also to transitory Poisson shocks. DeMarzo et al. (2012), Hoffmann and Pfeil
(2010), Gryglewicz, Mayer, and Morellec (2020), and Hackbarth, Rivera, and
Wong (2021) examine the effects of permanent and transitory cash flow shocks
on optimal compensation and investment in dynamic moral hazard models.
Décamps et al. (2017) and Bolton, Wang, and Yang (2019) examine the effects
of permanent and transitory shocks on cash holdings, credit lines usage, equity
issues, and risk management in models with financing frictions. We contribute
to this literature by providing efficient estimates of the deep parameters of a
cash flow model nesting all of these, at a granular level, and for a large fraction
of the Compustat universe.

As relevant as it is to analyze the effects of transitory and permanent shocks
on corporate policies, there are surprisingly only a few attempts in the empirical
corporate finance literature addressing this problem. In an early study, Guay and
Harford (2000) show that firms choose dividend increases to distribute relatively
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permanent cash flow shocks and repurchases to distribute more transient shocks.
Chang et al. (2014) decompose corporate cash flows into a transitory and
a permanent component and argue that this decomposition helps understand
how firms allocate cash flows and whether financial constraints matter in this
allocation decision. Lee and Rui (2007) show that such a decomposition also
allows determining whether share repurchases are used to pay out cash flows
that are potentially transitory, thus preserving financial flexibility relative to
dividends. Guiso, Pistaferri, and Schivardi (2005) examine the allocation of
risk between firms and their workers and show that firms absorb transitory
shocks fully but insure workers against permanent shocks only partially. Lastly,
Byun, Polkovnichenko, and Rebello (2019b,a) examine the separate effects of
persistent and transitory shocks on leverage and investment decisions.

Our paper advances this literature in two ways. First and more importantly,
our paper is unique in that it develops a filter that is specially designed to
estimate a general cash flow process used in corporate finance, while addressing
the practical issues with corporate cash flow data. Instead, most existing studies
use either the Hodrick–Prescott filter or the Beveridge–Nelson decomposition
to separate a time series into a trend (permanent) component and a cyclical
(transitory) component. The use of these filters is problematic for our purpose
because they cannot handle missing values, which are pervasive in large
cash flow panels, and they cannot estimate the correlations between long-
and short-term shocks, which, as we show, vary widely across firms and
influence corporate policies significantly. Our novel Kalman filter is free of
these limitations and performs much better empirically than these standard
filters when applied to corporate cash flows.4 Second, our paper differs from
prior studies because of its focus on liquidity management policies and on
identifying the differential impact of the exposure to permanent and short-
term shocks and the correlation between shocks on cash savings and financing
decisions.

Lastly, the type of analysis that relates cash holdings to hedging needs has
precedents in the literature, such as Acharya, Almeida, and Campello (2007)
and Duchin (2010). Our analysis is unique because it uses estimated deep
parameters of a canonical cash flow process instead of relying on proxies for
cash flow volatility and hedging needs to explain corporate cash policy. Another
important difference is that these studies relate cash balances to a number of
explanatory variables including hedging needs, implicitly assuming that firms
are at their target level of cash holdings. Recent theory has shown, however, that
due to adjustment costs, cash reserves are almost never at their target level (see
Décamps et al., 2011 or Bolton, Chen, and Wang, 2011). Our paper differs from

4 Another problematic aspect of the HP filter (used, for instance, in Byun, Polkovnichenko, and Rebello, 2019b,a
to separate the cash flow time series into a trend component and a cyclical component) is that it introduces biases
and spurious effects; see, e.g., Hamilton (2018) for details. By contrast, Kalman filtering does not introduce any
bias when the model is correctly specified; see, e.g., Chapter 13.4 in Hamilton (1994).
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these early studies because of its focus on specific financing times when the
predictions of dynamic liquidity management models are more likely to hold.
Recent papers by Danis, Rettl, and Whited (2014) or Eckbo and Kisser (2021)
follow a similar approach when testing dynamic capital structure theories.

1. Cash Flows Data

We begin our analysis by exploring the time series properties of corporate cash
flow data. Our goal here is to understand the nature of firm-level shocks to
operating cash flows and to determine which class of models best describes
cash flow dynamics.

1.1 Sample
We collect accounting data for publicly traded U.S. firms from Compustat
between 1971 and 2018 and stock price data from CRSP. We exclude financial
services firms (SIC codes 6000 to 6999), utilities (SIC codes 4900 to 4999), and
firms whose annual asset growth exceeds 500% in any given year, corresponding
to the 95th percentile of the distribution of annual growth in Compustat.5 We
convert all data into 2000 constant dollars using the GDP deflator and winsorize
the firm-level variables at the 1st and 99th percentiles.

Unlike panel data studies or most structural estimations in the corporate
finance literature, our goal is to estimate the deep parameters of the cash
flow process with a high level of granularity. To guarantee precision in
the estimation, we require firms to have sufficiently long cash flow series.
Specifically, we impose that a usable firm has at least 10, not necessarily
consecutive, observations.

Our final sample includes 208,605 firm-years for 10,136 firms, covering
about 43% of the firms (and 92% of the market capitalization) in the Compustat
universe since the 1970s. Our coverage is remarkably high, considering that
over 27% of Compustat firms have at most four cash flow observations. To
the best of our knowledge, Duchin (2010) is the only other study using
individual cash flow moments with almost as many firms. We can achieve
such a high coverage due to an advantageous feature of our Kalman filtering
technique: it does not require consecutive observations. Chang et al. (2014) and
Byun, Polkovnichenko, and Rebello (2019b,a) are the other three studies that
decompose firm cash flows into shocks of different duration. These studies use
standard filters requiring arithmetic interpolation, longer time series, or no gaps.

5 Typical screening criteria in the cash savings literature (e.g., Almeida, Campello, and Weisbach, 2004,
Acharya, Almeida, and Campello, 2007) remove firm-year observations in which asset growth exceeds 100%
to remove observations likely to reflect “large jumps in business fundamentals” that are indicative of mergers,
reorganizations, or other major corporate events. Our filtering method can potentially undo the effects of removal
of interim firm-year observations because missing values are imputed as part of the estimation algorithm. Hence,
we proceed to remove the firm altogether. The screen results in the exclusion of 1,688 firms, which are on average
almost six times smaller than those included.
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Hence, they cover at most 5,803 firms (Byun, Polkovnichenko, and Rebello,
2019b). An important implication of this high coverage of the Compustat
universe is that we can study firms with very volatile cash flows. Such firms are
often excluded from empirical studies, and yet their behavior is informative.
As we shall see, they respond to their very volatile cash flows with conservative
policies, leading to much lower asset volatilities.

1.2 The operating cash flows variable
The stochastic properties of the cash flow derived from operations are key
determinants of firms’ policies, such as earnings retention or external financing,
that aim to increase cash reserves and, therefore, the resilience to shocks. Hence,
we pursue the notion of operating cash flows, defined as EBITDA minus the
change in working capital.6 We subtract the change in working capital because
this account captures the allocations of cash that are needed to sustain the firm’s
operations.7 The subtraction of the change in working capital (which does not
include changes in cash or cash equivalents) is the only difference between our
measure and the notion of operating income used in, for example, Hennessy
and Whited (2007). We show in Section 5.2 that the estimates of the model
parameters do not change significantly if we do not subtract the change in
working capital.

Our sample includes 10,136 firms that vary along many dimensions. To
make firms of different sizes comparable, we divide each year’s operating cash
flow by the firm’s initial value of total assets. Importantly, this normalization
does not affect the time series properties of operating cash flows because the
initial value of assets is constant over time. Table 1 contains the definitions
and descriptive statistics of our operating cash flow variable as well as other
firm-specific characteristics that we use in the empirical analysis.

1.3 Time series properties of operating cash flows
We run two tests to determine whether operating cash flows include a
permanent (nonstationary) component, as assumed in most recent dynamic
models of investment, financing, cash savings, or compensation policies (see,
e.g., Leland, 1994; Carlson, Fisher, and Giammarino, 2004; Abel and Eberly,
2011; DeMarzo et al., 2012; Décamps et al., 2017):8 the Augmented Dickey–
Fuller (ADF) test and the Kwiatkowski et al. (1992) (KPSS) test. The null

6 In the savings and investment literature, the maximum cash available to save is approximated by the physical
flow of cash from operations minus taxes and interest expenses (Almeida, Campello, and Weisbach, 2004, Denis
and Sibilkov, 2010, Hennessy and Whited, 2007, Riddick and Whited, 2009) and possibly dividends (Opler
et al., 1999; Bates, Kahle, and Stulz, 2009) or extraordinary items (McLean, 2011). Chang et al. (2014) account
for all flows of cash before investment, including also the net changes in working capital, deferrals, and equity
transactions. These definitions are not appropriate for our study as they include a policy choice component.

7 The working capital account is reported differently in Compustat before and after SFAS #95 regulations. Prior to
July 1988, the working capital account is reported directly (wcapc). Afterward, it needs to be constructed using
the full statement of cash flows (see Chang et al., 2014).

8 While early dynamic contracting and liquidity models assume that cash flow shocks are purely transitory (see,
e.g., DeMarzo and Sannikov, 2006, Bolton, Chen, and Wang, 2011), recent contributions have enriched these
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Table 1
Definitions and descriptive statistics of variables

A. Variable definition

Variable name Variable definition

Operating cash flow EBITDA (oibdp) minus change in working capital, defined
as in Table 1 of Chang et al. (2014).

Cash flow-to-initial assets Ratio of Operating cash flow to the first observation of the book
value of total assets (at)

Cash savings Ratio of the change in cash holdings (che) from year t −1
to t to the lagged book value of total assets (at)

Gross equity issuance Ratio of the proceeds from sales or conversions of common and
preferred stock (sstk) to the lagged book value of total assets (at)

Equity issuance dummy Dummy variable equal to one if Gross equity issuance is larger
than 5%, and zero otherwise

Net equity issuance Proceeds from sales or conversions of common and
preferred stock (sstk) minus dividends on common stock (dvc),
dividends on preferred stock (dvp), and repurchased shares (prstkc)
divided by the lagged book value of total assets (at)

Net equity issuance dummy Dummy variable equal to one if Net equity issuance is larger
than 5%, and zero otherwise

Net debt issuance Long-term debt issuance (dltis) minus long-term debt reduction (dltr)
divided by the lagged book value of total assets (at)

Net debt issuance dummy Dummy variable equal to one if Net debt issuance is larger
than 5%, and zero otherwise

Market-to-book ratio Book value of total assets (at) + market cap (csho*prcc_f)
− book equity (ceq) divided by total assets

ln(Total assets) Logarithm of the book value of total assets (at)
Cash flow-to-assets Ratio of Operating cash flow to lagged book value of total assets (at)
Industry cash flow volatility Mean of the standard deviation of firms’ cash flow-to-assets ratio, for

all firms in the same two-digit SIC industry and year

B. Descriptive statistics

N Mean Stdev p5 p25 p50 p75 p95

Cash flow-to-initial assets 207,554 1.507 18.403 −0.681 0.038 0.185 0.542 4.161
Cash savings 197,597 0.025 0.196 −0.156 −0.024 0.000 0.032 0.241
Change in cash-to-assets 197,549 0.000 0.093 −0.145 −0.026 0.000 0.025 0.144
Gross equity issuance 191,165 0.080 0.308 0.000 0.000 0.001 0.014 0.416
Equity issuance dummy 191,165 0.151 0.358 0.000 0.000 0.000 0.000 1.000
Net equity issuance 182,611 0.045 0.281 −0.095 −0.022 −0.001 0.003 0.337
Net equity issuance dummy 182,611 0.126 0.331 0.000 0.000 0.000 0.000 1.000
Net debt issuance 183,912 0.022 0.130 −0.104 −0.018 0.000 0.025 0.230
Net debt issuance dummy 183,912 0.190 0.392 0.000 0.000 0.000 0.000 1.000
Market-to-book ratio 181,410 2.180 2.662 0.762 1.085 1.444 2.210 5.637
ln(Total assets) 208,467 5.070 2.379 1.261 3.402 5.011 6.693 9.179
Cash flow-to-assets 197,168 0.074 0.263 −0.300 0.034 0.113 0.184 0.334
Industry cash flow volatility 201,480 0.177 0.188 0.060 0.091 0.134 0.204 0.382

This table presents the definitions (panel A) and the descriptive statistics (panel B) of the main variables used
in the analysis. The descriptive statistics are: number of observations (N), mean, standard deviation, and the
percentiles p5, p25, p50, p75, and p95. The sample covers the period 1971 to 2018.

hypothesis in the ADF test is that operating cash flows are nonstationary and
have a unit root, while the alternative hypothesis is that they are stationary and
follow an autoregressive process with a drift. Given the risk of failing to reject

models by adding permanent shocks. See, e.g., He (2009), Hoffmann and Pfeil (2010), DeMarzo et al. (2012),
or Gryglewicz, Mayer, and Morellec (2020) for contracting papers and Décamps et al. (2017) or Bolton, Wang,
and Yang (2019) for dynamic liquidity papers.
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Table 2
Tests of nonstationarity of operating cash flows

ADF KPSS

Minimum Number
10% 5% 1% 10% 5% 1% observations of firms

87.1 91.4 97.1 91.4 88.2 82.8 48 373
83.8 90.0 96.3 89.0 84.5 76.6 38 792
82.8 89.5 96.2 85.1 79.3 68.9 30 1,616
85.1 91.1 97.0 70.2 61.7 47.6 15 6,342

Table entries for ADF (columns 1 to 3) and for KPSS (columns 4 to 6) tests are the percentage of times that
the ADF test is not rejected and the KPSS test is rejected for three different confidence levels, 10%, 5%, and
1%, respectively. The null hypothesis of the ADF test is that firm’s cash flows have a unit root—that is, they
are nonstationary. The null hypothesis of the KPSS test is that the firm’s cash flows are stationary. There are
10,136 firms in our cash flow panel. For any given firm there is a maximum 48 yearly observations of cash flows
between 1971 to 2018. The ADF and KPSS tests are run for each firm’s cash flow time series when the number
of available observations exceeds a given minimum (reported in “Minimum observations”). The last column
reports the total number of firms tested for each required minimum number of observations. Critical values for
the ADF and KPSS tests are not tabulated for firms with fewer than 15 cash flow observations.

the null hypothesis with small sample sizes, we also implement the KPSS test, in
which the null hypothesis is that cash flows are stationary, while the alternative
is that they follow a unit root process. In KPSS tests, the bias with small samples
is toward not rejecting stationarity, that is, deeming the time series as stationary
too often. We run the ADF and KPSS tests for each firm’s operating cash flow
time series in our panel. Table 2 summarizes the results.

The first row in panel A of Table 2 shows the results for the ADF and KPSS
tests over the subsample of 373 firms that have the longest possible cash flow
time series of our sample: 48 yearly observations. For 97.1% of the firms in this
subsample, in which both tests have the highest power, the ADF test does not
reject the null hypothesis of nonstationarity at the 1% level. For 91.4% of these
firms, the KPSS tests reject the null hypothesis of stationary cash flows at the
10% level. The high rejection rate is remarkable for the KPSS test, given that
rejecting the hypothesis of stationarity in relatively short samples is typically
rare.

The ADF and KPSS tests results also strongly suggest nonstationarity for
firms with fewer observations: For 82.8% and 85.1% of all 1,616 firms with
at least 30, not necessarily consecutive, cash flow observations, the ADF tests
do not reject nonstationarity while the KPSS tests reject stationarity at the
10% level, respectively. Even as the power decreases further, the KPSS tests
still reject the hypothesis of stationarity at the 10% level for 70.2% of the
6,342 firms with at least 15 observations in the sample period. (The critical
values for the tests cannot be computed for firms with fewer than 15 time series
observations.)

In sum, there is overwhelming evidence that a majority of firms’ operating
cash flows are subject to permanent shocks, as in the most general, canonical
cash flow models used in dynamic corporate finance. We now discuss
our method to decompose cash flow shocks into permanent and transitory
components and estimate their primitive parameters.
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2. Estimation of the Cash Flow Model

2.1 The model
To quantify the exposure of operating cash flows to permanent and transitory
shocks, we estimate (the discrete time version of) a canonical cash flow model
that nests as special cases most of the cash flow models used in recent dynamic
investment, financing, liquidity, or compensation models. In state space form,
this cash flow model consists of the following transition and measurement
equations:

Xt =(1+μ)Xt−1 +σP Xt−1ε
P
t (1)

Zi,t =Xt +σAXt−1ε
A
i,t , (2)

where Xt is the unobserved asset productivity with constant growth rate μ and
volatility σP >0, and Zi,t is the operating cash flow of firm i, in year t , with
short-term volatility σA >0. In this model, the shock εP

t influences cash flows
permanently by affecting the productivity of assets. The short-term shock εA

i,t

affects the cash flow directly and may also affect the firm’s long-term prospects.
Specifically, we allow short-term and permanent shocks to be correlated with
correlation coefficient ρ ∈ (−1,1). Hence, the short-term shock can be written
as

εA
i,t =ρεP

t +
√

1−ρ2εT
i,t , (3)

where εT
i,t is a purely transitory shock uncorrelated with εP

t . Both εP
t and εT

i,t

are distributed as N (0,1). When σA =σP =0, cash flows follow the Gordon
growth model used in textbook valuation models; see, for example, Berk
and DeMarzo (2019). When σA =0 and σP >0, cash flows are only subject
to permanent shocks. This is the discretized version of the cash flow model
used in dynamic investment and capital structure models (see Abel and Eberly,
1994 or Leland, 1998). When μ=σP =0, cash flow shocks are identically and
independently distributed, and follow a purely stationary process, as in early
dynamic liquidity or compensation models (see Bolton, Chen, and Wang, 2011
or DeMarzo and Sannikov, 2006). When σA >0 and σP >0, cash flows are
subject to both permanent and transitory shocks. When ρ �=0, the model captures
another important dimension of risk. Indeed, ρ reflects the notion of correlation
between current cash flow and investment opportunities discussed, for instance,
in Froot, Scharfstein, and Stein (1993) and, hence, the firm’s hedging needs.9

To summarize, Equations (1)–(3) capture the heterogeneity of firms’
operating cash flow exposures to long-term and short-term risk via different

9 This general cash flow model has been proposed by Décamps et al. (2017), who show that cash policy, equity
issuance and credit line usage depend on the combination of all the cash flow parameters. More recently, a similar
cash flow model has been used to explain compensation policy (see, e.g., Gryglewicz, Mayer, and Morellec, 2020),
debt policy (see, e.g., Bolton, Wang, and Yang, 2021), financial development (see, e.g., Rebelo, Wang, and Yang,
2020), or the horizon of corporate policies (see, e.g., Breugem, Marfe, and Zucchi, 2021).
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combinations of values of σP , σA, and ρ. Estimation of these parameters with
the highest possible level of granularity will enable the testing of empirical
predictions of the effects that different combinations of parameter values have
on corporate policies.

2.2 Estimation
The goal of our estimation is to separately identify permanent and short-
term shocks and estimate the parameters (μ, σA, σP , and ρ). Because asset
productivity is not observable, we represent the cash flow model in the state
space form in Equations (1)–(2) and estimate the model using the most efficient
method—namely, maximum likelihood with Kalman filtering. Because shocks
are correlated, the standard Kalman filter is biased and inconsistent and,
therefore, cannot be used. This problem is reminiscent of an endogeneity
issue in regression analysis, with the major difference that the regressor (asset
productivity) is unobserved and needs to be filtered out. We solve this problem
by theoretically regressing σAPt−1ε

A
i,t on σP Pt−1ε

P
t and by transforming the

measurement equation (2). The new measurement error is then given by the
residuals of this theoretical regression. Because of this transformation, we need
to derive a novel Kalman filter that is described in Appendix A.

To provide insight into our estimation method (described in detail in
Appendix A), we discuss its steps for the case with no missing observations
(Appendix A.3 discusses how missing observations are handled). Using
standard notation in state space models, the model in Equations (1)–(2) reads as

Xt =�XXt−1 +ωt (4)

Zt =HZXt +ut , (5)

where Xt is the unobserved state process (latent asset productivity), �X =
(1+μ), ωt is the transition shock distributed as N (0,σ 2

P X2
t−1), Zt is the observed

N -dimensional vector collecting firms’ operating cash flows at time t , HZ is an
N -dimensional vector of ones, and ut is the measurement error distributed as
N (0,σ 2

AX2
t−1). In classic state space models, ωt and ut are uncorrelated. In our

model, the correlation between permanent and short-term shocks translates into
correlated ωt and ut . Because ρ is the contemporaneous correlation between the
shock of the state variable Xt and the measurement error ut , it cannot be handled
by writing the state process in vector form, X′

t =(Xt,Xt−1). Even when the state
process is in vector form, the correlation between the first component of the
state vector Xt and the measurement error ut is still there, making the vector-
valued, standard Kalman filter not applicable. To account for this correlation,
we theoretically regress ut on ωt and take the residual of this regression as the
new measurement error. The measurement equation (5) changes as follows:

Zt =HZXt +ut +J (Xt −�XXt−1 −ωt ) (6)

=H ∗
ZXt +�∗

XXt−1 +u∗
t ,
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where H ∗
Z =HZ +J , �∗

X =−J�X and u∗
t =ut −Jωt . Note that Equations

(5) and (6) are equivalent because Xt −�XXt−1 −ωt =0. Setting
J =E[ut ωt |Xt−1]/E[ω2

t |Xt−1] yields that the new measurement error u∗
t

is uncorrelated with Xt and Xt−1. Because the transformed measurement
equation depends on Xt−1, the prediction step of Zt and its error covariance
matrix are different than in the standard Kalman filter. This difference leads
to the generalized Kalman filter derived in Appendix A.2. We note that this
method does not involve any approximation of the model in Equations (1)–(3).
If ρ =0, then J =�X =0 and H ∗

Z =HZ , and the generalized Kalman filter
reduces to the standard one.

Finally, given the model parameters ρ, σP , σA, and μ, the generalized Kalman
filter recovers the unobserved state process Xt that determines the likelihood
function of observed cash flows Zt , t =1,...,T ,

T∑
t=1

−1

2

[
N log(2π )+log|Ft |t−1|+(Zt −Ẑt |t−1)′F−1

t |t−1(Zt −Ẑt |t−1)
]
, (7)

where Zt |t−1 is the one-step-ahead prediction of Zt based on the filtered state
process Xt and Xt−1, and Ft |t−1 is the error covariance matrix defined in
Equation (A8). Model parameters are changed so as to increase the value of
the log-likelihood, which requires re-running the generalized Kalman filter
and re-computing the log-likelihood. The iterative procedure is repeated until
convergence, which takes less than one second for a cash flow panel of
N =10 firms observed over T =48 years. A Monte Carlo analysis, described
in Appendix B, confirms that our generalized filter outperforms the standard
Kalman filter, in which ρ = 0.10

2.3 Comparing methods to recover shocks
Our novel Kalman filter offers four main benefits over standard methods
to separate a time series into a trend (persistent) component and a cyclical
(transitory) component, such as the Hodrick–Prescott (HP) filter and the
Beveridge–Nelson (BN) decomposition.11

First, neither of these standard filters is suited to study correlations between
permanent and short-term shocks. The HP filter assumes zero correlation

10 In the signal processing literature, Ma, Wang, and Chen (2010) have introduced a Kalman filter that can account
for the correlation between the state variable and the measurement error. While for positive correlations their
filter outperforms the standard Kalman filter, they find that for negative correlations, the two filters have a similar
degree of inaccuracy. Appendix B.2 provides an in-depth discussion of the differences between the two filters
and shows that our filter outperforms the filter developed by Ma, Wang, and Chen (2010).

11 In the empirical corporate finance literature, the HP filter has been applied for instance by Byun, Polkovnichenko,
and Rebello (2019b) and the BN decomposition by Chang et al. (2014). Given a time series yt ,t =1,...,T , the HP
and BN filters provide the additive decomposition yt =τt +ct , where τt is identified as a trend component and ct
as a cyclical component. In the HP filter, the trend component τt ,t =1,...,T , is obtained as the minimization of∑T

t=1(yt −τt )2 +λ
∑T −1

t=2 ((τt+1 −τt )−(τt −τt−1))2, where the parameter λ>0 controls the smoothness of the
trend component. The BN filter is based on an ARMA model for (yt −yt−1) and identifies the trend component
τt as a random walk with drift.

3934

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/8/3922/6433686 by Erasm

us U
niversity Library user on 27 Septem

ber 2022



[19:00 5/7/2022 RFS-OP-REVF210147.tex] Page: 3935 3922–3972

Understanding Cash Flow Risk

between trend and cyclical components, whereas the BN decomposition
imposes perfectly correlated trend and cyclical shocks. This aspect is
problematic because the shock correlation is key to capture firms’ hedging
needs. Second, neither is designed to recover volatilities of permanent shocks.
As shown with formal tests in Section 1, permanent shocks are a major driver
of firms’ cash flows. Third, neither can handle missing observations. These
methods were developed to decompose complete time series such as annual
consumption or GDP. By contrast, Kalman filtering is by design a method
of estimation and imputation of missing data (see Appendix A.3 for details).
Many Compustat firms have holes in the cash flows time series. Because of these
missing data, applying the HP or BN filter would force us to drop more than half
of the 10,136 firms in our panel. Fourth, our method provides a decomposition
while estimating the deep parameters of a canonical cash flow model. With
other filtering methods, deep parameters can only be approximated with the
calculation of time-varying moments over time series of filtered shocks.

To illustrate the benefits of using our method to recover cash flow shocks from
uninterrupted cash flow time series (i.e., to illustrate benefits 1 and 2 above), we
run a Monte Carlo simulation that consists of the following steps: (i) simulate
one panel of cash flows for 10 firms over 50 years using model (1)–(3) with
the parameter values in Décamps et al. (2017), that is, ρ =−0.21, σP =0.25,
σA =0.12, μ=0.01; (ii) estimate the four model parameters using our method
in Section 2.2, which we label as KF. For the HP and BN methods, (iii) apply
the filter to each time series of cash flows to recover trend and cycle components
at the firm level (using an adjusted smoothing parameter λ=6.25 as in Byun,
Polkovnichenko, and Rebello 2019b for the HP filter and an ARMA(2,2) model
as in Chang et al. 2014 for the BN filter); (iv) compute the correlation between
trend and cycle shocks and their standard deviations to obtain estimates of
ρ, σP , and σA, and the mean of trend changes to obtain μ; (v) average these
estimates across the 10 firms; (vi) compute the estimation errors, defined as
estimated values minus true parameter values, for KF, HP, and BN; (vii) repeat
the procedure 1,000 times.

Figure 1 summarizes the simulation results. The HP and BN methods are
systematically biased and vastly inaccurate. While KF can be expected to
outperform HP and BN, as KF estimates the model that is used to simulate
the cash flow data, HP and BN produce largely imprecise estimates on their
own. A well-known limitation of the BN decomposition is that the correlation
between trend and cyclical shocks is either +1 or −1 depending on the ARMA
parameters, as BN relies on a one-shock-only ARMA model. Consequently, BN
is unable to estimate the correlation ρ. The HP filter imposes zero correlation
and nearly always overestimates the true negative correlations, with a median
bias of 0.35. While HP tends to outperform BN, both methods substantially
underestimate the volatility σP of permanent shocks and the drift μ, and largely
overestimate the volatility σA of short-term shocks. For example, the true value
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Figure 1
Estimation errors of cash flow shocks in simulated data
The model in Equations (1)–(3) with parameter values ρ =−0.21, σP =0.25, σA =0.12, μ=0.01 is used to simulate
1,000 panels of cash flows for 10 firms over 50 years. The box plots show the estimation errors of the permanent
and short-term shock correlation, ρ; the volatility of permanent and transitory shocks, σP and σA; and the drift
of the permanent process, μ. Cash flow shocks are recovered using the Kalman filter (KF), the Hodrick–Prescott
filter (HP), and the Beveridge–Nelson decomposition (BN).

of σP is 0.25, while HP gives median estimates of 0.07 only. The KF method
produces unbiased and accurate estimates of all four parameters.

Figure 2 provides an illustrative example of the performance of KF and
HP. (Because HP outperforms BN, we do not report the latter in Figure 2
for readability.) For a simulated panel of cash flows, the figure shows the
time series trajectory of the latent asset productivity (known in simulation),
the Kalman-filtered asset productivity, and the HP-filtered trend component.
The HP filter produces an estimated trajectory of the asset productivity that
is too smooth, precisely because the HP filter is a cubic spline smoother.
Taking the HP-filtered trend component as latent asset productivity would lead
to significant underestimation of the volatility of permanent shocks; see, for
instance, Hamilton (2018) for a recent discussion of the drawbacks of the HP
filter. In contrast, the Kalman-filtered asset productivity closely tracks the true
asset productivity. The Internet Appendix develops a simple example that shows
that the HP filter introduces biases and spurious effects and that the Kalman
filter does not.

In unreported Monte Carlo simulations, we draw the parameter values of
ρ,σP ,σA,μ from uniform distributions spanning the interquartile range of the
parameter estimates reported in Table 4. In that case, simulated cash flows
are more volatile than the cash flows mentioned previously. Consequently,
estimation errors of HP and BN are much larger than those in Figure 1, whereas
KF provides precise estimates of all model parameters.
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Figure 2
Generalized Kalman filter and Hodrick–Prescott filter applied to simulated cash flow data
Based on a panel of simulated cash flows from the model in Equations (1)–(3), the graph shows the time series
trajectory of the true latent asset productivity, the Kalman-filtered asset productivity, and the trend component
of the group average of cash flows from the HP filter. The Kalman-filtered asset productivity tracks closely the
true asset productivity, while the HP filter, being a cubic spline smoother, provides a too-smooth approximation
of the asset productivity.

2.4 Identifying assumptions
If there was no correlation between the shocks (ρ =0), the cash flow model
in Equations (1)–(3) would be a classic state space model with Gaussian
likelihood. The remaining three parameters would be identified from the unique
global maximizer of the likelihood function (see Appendix B for details). As we
show in Appendix A.4, identifying the shock correlation ρ requires imposing
more structure on the model. To achieve identification, we assume in the
following that transitory shocks are firm specific while permanent shocks have
a “systematic” nature, in that they affect a group of firms. That is, we consider
that there is a group-specific factor that moves the permanent component but not
the transitory component of all firms in the group, where groups are defined in
Section 2.5. Appendix A.4 indeed shows that ρ is not identified if both shocks
are firm-specific.

To provide an intuition for this identifying assumption, consider a
conventional model of asset productivity in which an observable process is
driven by the sum of persistent shocks (modeled as an AR(1) process) and
short-term shocks (modeled as a white noise process). When both shocks
are unobservable, the challenge of identifying their correlation is similar to
identifying the correlation ρ in Equations (1)–(3). As we formally show in
Appendix A.4, the correlation between firm-specific persistent and short-term
shocks is not identified because this parameter enters all autocovariances of
the observed firm productivity as a multiplicative constant to both persistent
and short-term volatilities, and thus the correlation cannot be disentangled
from these volatilities. If instead, persistent shocks are common across firms,
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as per our identifying assumption, then the time series of the cross-sectional
average productivity provides additional and nonredundant moment conditions
to identify the shock correlation.

The implication of this result is that the firm-by-firm estimation of the model
in Equations (1)–(3) is infeasible. Individual firm estimation is also undesirable
because annual cash flow time series are not very long. Our solution to achieve
maximum granularity is to estimate the model parameters for the smallest
possible groups of very similar firms, assuming each firm in the group is exposed
to the same permanent shocks. Effectively, this assumption is significantly
weaker than a common practice to assume that long-term productivity shocks
are common to all firms in an industry. For example, Bates, Kahle, and Stulz
(2009) use the volatility of the average cash flow over all firms in each two-
digit SIC code. Similarly, Acharya, Almeida, and Campello (2007) and Duchin
(2010) operationalize the firm’s hedging needs with the correlation between a
firm’s current cash flow and the median or mean R&D expense over all firms
with the same three-digit SIC code. As we shall see next, our estimation method
achieves a very high level of precision with only 10 firms per group, rendering
our commonality assumption almost innocuous.

Our identifying assumption that permanent shocks are common to a group
of firms encompasses situations in which firms face common technology,
regulatory, or consumer preference shocks. An alternative identifying
assumption would be to consider that transitory shocks are common to a group
of firms, while permanent shocks are firm-specific. This would encompass
situations in which firms in the same group end up with different productivity
growth paths but always face similar temporary disruptions, for example,
weather shocks or common supply-chain disruptions. The econometric analysis
of this alternative model—presented in the Internet Appendix—reveals two
substantial problems. First, because the transitory shock is common and the
asset productivity is vector valued (one asset productivity for each firm in any
given group), the covariance matrix between short-term and permanent shocks
is singular, which can create numerical instabilities when applying the Kalman
filter. Second, missing values are pervasive in cash flow data, and it is unclear
how to filter out the firm-specific asset productivity when cash flows are missing.
These two problems hinder accurate estimation of this alternative model.

2.5 Grouping firms with similar cash flow dynamics
We estimate the cash flow model in (1)–(3) for each of many small groups of
firms. We assume that all firms within each group g are homogeneous in that
they have the same parameters μg , σP,g , σA,g , and ρg , and asset productivity,
Xg,t .12 Fitting the model to relatively small samples allows us to achieve

12 In state space form, the cash flow model can therefore be rewritten as:

Xg,t =
(
1+μg

)
Xg,t−1 +σP,g Xg,t−1εP

g,t
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greater estimation accuracy because the model parameters can adjust to the
data features of each specific group of firms. Moreover, we obtain a large set
of estimates of the cash flow model’s deep parameters, as opposed to just one
or a few sets for their representative firms. Since the limiting case—which is to
estimate the cash flow model firm-by-firm—is not feasible, estimation by small
groups maximizes the cross sectional variation in these estimates and enables
a direct test of the predicted link between deep parameter heterogeneity and
corporate policies.

To group firms, we adopt two sequential criteria that are motivated by the
assumption that permanent shocks are common to all firms in the group. The
first is the three-digit SIC industry code. We expect firms within the same
three-digit SIC industry to be exposed to similar short-term volatility (e.g.,
industry demand uncertainty) and similar permanent shocks (e.g., technology or
regulatory shocks). The second is the firm’s cash flow growth rate: Within each
three-digit SIC industry, we group firms based on their average annual growth
rate of cash flows. In the long run, firms with similar asset productivity will
have similar average cash flow growth rates. For the precision of our parameter
estimates, we impose the additional requirement that each group includes at
least 10 firms whenever possible (see Appendix B). Because the number of
firms in any given industry is not generally a multiple of 10, the last group of
firms in each three-digit SIC code will include between 10 and 19 firms. In the
rare cases in which there are fewer than 10 firms in a three-digit SIC industry,
we include all firms in one group; this results in 43 groups of five to nine
firms.

Applying the criteria above, our sample of 10,136 firms is split into 918
three-digit SIC/cash flow growth groups. As an example, Figure 3 shows the
cash flows of one group of firms in the 100 SIC code. Missing observations
in firm cash flows are evident in the interrupted time series of firm cash
flows. Because our groups are relatively small, our parameter estimates
can potentially exhibit substantial variation even within three-digit SIC
industries.

To assess the homogeneity of firms within each group, we decompose the
total variation of several firm-specific outcome and policy variables into the
between- and within-group components. For each characteristic, we compare
the similarity within and heterogeneity between our estimation groups to
those implied by other narrow industrial classifications. Table 3 shows that,
relative to the four-digit SIC or the 17 Fama and French (1997) industries,
our classification produces less within-group variation for the ratios of annual
sales-to-assets, earnings-to-assets, and average sales growth, as well as for key

Zi,g,t =Xg,t +σA,g Xg,t−1 (ρgεP
g,t +

√
1−ρ2

g εT
i,t ),

where Xg,t is the unobserved asset productivity with constant growth rate μg and volatility σg,P >0, and Zi,g,t
is the operating cash flow of firm i of group g, in year t , with short-term volatility σg,A >0.
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Figure 3
Cash flows for one group of firms
This figure shows the yearly firm cash flows scaled by the initial level of assets for a select group of 10 firms in
the 100 three-digit SIC code.

policy variables such as cash holdings, the rates of savings and equity issuance,
the size of loans and credit lines, and the CAPEX-to-assets and debt-to-assets
ratios. Our grouping also implies more within-similarity in the ratio of R&D
expenditure to sales, the markups estimated following De Loecker, Eeckhout,
and Unger (2020), the number of patents, and their market value, according to
Kogan et al. (2017). Remarkably, grouping only by long-run similarity in the
average cash flow growth rate within each three-digit SIC industry produces
similarities across many other dimensions.

Table 3 shows that our grouping method also produces the most between-
group variation for as many firm characteristics relative to the four-digit SIC
or the 17 Fama and French (1997) industrial classifications. In a nutshell,
our grouping approach produces many small and heterogeneous groups of
alike firms. The implied high granularity of estimates is key for hypothesis
testing.

3. Risk Parameter Estimates

Table 4 summarizes the maximum likelihood (ML) estimates of the model’s
four parameters, σP , σA, ρ, and μ for all the 918 three-digit SIC/cash flow
growth rate groups (panel A), their precision (panel B), and the correlation
between the parameter estimates (panel C).13 We winsorize the estimates at the
1st and 99th percentiles when they approach their respective lower and upper

13 To alleviate the concern that shocks may not be normally distributed, we have also computed quasi maximum
likelihood (QML) standard errors (White, 1982) as a robustness check. Based on maximum likelihood standard
errors, Table 4 reports that 56%, 84%, and 76% of the estimates of the cash flow risk parameters ρ, σP , and σA,
respectively, are statistically away from zero at a 5% level. Using QML standard errors yields similar results, and
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Table 3
Decomposition of standard deviation by industries or estimation groups

Standard deviation

Within- Between-

SIC4 FF17 Groups SIC4 FF17 Groups

1. Technology variables
Capital-to-labor ratio 1.06 1.29 1.04 0.92 0.99 1.25
Operating leverage 0.76 0.89 0.75 0.57 0.40 0.61
2. Outcome variables
Annual sales-to-assets 1.54 1.63 1.54 0.61 0.45 0.68
Annual earnings-to-assets 0.34 0.35 0.34 0.07 0.06 0.13
Annual sales growth 0.47 0.47 0.46 0.07 0.05 0.08
3. Policy variables
Cash holdings 0.16 0.18 0.16 0.06 0.05 0.09
Cash savings 0.19 0.20 0.19 0.02 0.02 0.03
Net Equity issuance 0.28 0.28 0.27 0.07 0.05 0.08
Loans-to-assets 0.40 0.42 0.39 0.17 0.06 0.20
Total debt-to-assets 0.27 0.28 0.26 0.09 0.03 0.09
CAPEX-to-assets 0.07 0.07 0.07 0.03 0.03 0.04
4. Product market and
innovation variables
De Loecker et al. (2020) markups 0.38 0.44 0.39 0.13 0.12 0.25
R&D expense-to-assets 0.83 0.91 0.82 0.32 0.21 0.45
Number of patents 0.91 0.96 0.87 0.44 0.28 0.45
Kogan et al. (2017) market value of patents 1.22 1.28 1.17 0.51 0.33 0.55

This table shows the decomposition of the total standard deviation of several firm-specific outcome, financing
policy, product market, and innovation variables into the between- and within-group standard deviations. Firms
are grouped according to their four-digit SIC code (SIC4), their 17-industry classifications in Fama and French
(1997) (FF17), or they are allocated into groups of 10 firms sorted by their average annual cash flow growth rate
within each three-digit SIC code (“Groups”). The data are for all yearly observations of the 10,136 Compustat
firms with at least (not necessarily consecutive) 10 years of cash flow data between 1971 and 2018. Capital-to-
labor ratio is defined as Net PPE divided by Number of Employees; Operating leverage is SG&A plus Costs of
Goods Sold divided by Total Assets. Annual sales-to-assets is Annual Sales divided by Total Assets, and Annual
earnings-to-assets is Net Income divided by Total Assets. Cash holdings is Cash and Marketable Securities
divided by Total Assets, and Loans-to-assets is the total amount principal outstanding in term loans and credit
lines in Dealscan, divided by Total Assets. Total debt-to-assets is Short-term debt plus Long-term debt divided
by Total Assets, CAPEX-to-assets is the Annual Capital Expense divided by Total Assets. The markups estimates
come from De Loecker, Eeckhout, and Unger (2020), R&D expense-to-assets is the ratio of Annual R&D expense
to Total Assets and the number and market value of the firm’s patents from Kogan et al. (2017). All other variables
are defined in Table 1.

bounds (i.e., near −1 and 1 for the shock correlation, and near zero for each
volatility), and at the 10th and 90th percentiles otherwise.

3.1 Estimates of ρ

The estimates of the correlation between permanent and short-term shocks
in panel A of Table 4 exhibit significant variation across groups. The 5th
percentile of the estimated correlations is −0.23, while the 95th percentile
is 0.23 (with a minimum of −0.34 and a maximum of 0.58, unreported).
The median estimated correlation is −0.076, with 80% of the estimates being

the percentages change to 60%, 74%, 73%, respectively. While some estimates of σP and σA are less significant,
other estimates of ρ are more significant using QML standard errors. The inference in Table 4 is therefore robust
to the misspecification of the shocks distribution.
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Table 4
Summary of the parameter estimates of the cash flow model

A. Parameter estimates

Standard deviation

#est. Mean Total sdb sdw p5 p25 p50 p75 p95

ρ̂ 918 -0.055 0.143 0.107 0.121 −0.232 −0.122 −0.076 −0.023 0.229
σ̂P 918 0.826 0.584 0.377 0.432 0.145 0.301 0.651 1.264 1.901
σ̂A 918 0.755 1.411 0.905 1.225 0.029 0.060 0.093 0.357 4.486
μ̂ 918 0.148 0.104 0.069 0.081 0.021 0.064 0.119 0.218 0.345
B. Values of t-statistics of the parameter estimates

Proportion of

Standard p-values
#est. Mean deviation <.05 <.01 p5 p25 p50 p75 p95

Text space
ρ̂ 918 -27.383 98.947 .558 .503 −94.612 −9.383 −1.058 −0.201 2.122
σ̂P 918 37.595 59.465 .842 .757 1.635 2.612 5.425 42.477 181.635
σ̂A 918 9.217 36.124 .758 .622 1.001 2.003 3.319 5.791 19.838
μ̂ 918 7.921 51.590 .464 .386 −3.415 0.808 1.368 3.937 31.186
C. Correlations between the parameter estimates

ρ̂ σ̂P σ̂A μ̂

ρ̂ 1.000
σ̂P −0.196∗∗∗ 1.000
σ̂A −0.243∗∗∗ 0.445∗∗∗ 1.000
μ̂ 0.038 0.471∗∗∗ 0.176∗∗∗ 1.000

This table summarizes the maximum likelihood estimates of the cash flow model parameters, μ̂,σ̂P ,σ̂A,ρ̂, in
the model

Pt =(1+μ)Pt−1 +σP Pt−1εP
t

Ai,t =Pt +σAPt−1εA
i,t

where εA
i,t

=ρεP
t +

√
1−ρ2εT

i,t
, the correlation ρ ∈ (−1,1), Pt is the unobserved asset productivity, and Ai,t

are firm i cash flows in year t , for i =1,...,N and N =10. The permanent shock εP
t and transitory shock εT

i,t
are uncorrelated and distributed as N (0,1). The model parameters are estimated for each of the 918 three-digit
SIC/cash flow growth groups of firms.The descriptive statistics are: number of model parameter estimates (#est.);
mean; (Total) standard deviation, decomposed into between- (sdb), and within-three-digit SIC industry (sdw)
variation; and the percentiles p5, p25, p50, p75, and p95. The sample covers the period 1971 to 2018.

negative. As shown in Section 4, this estimated correlation implies, for example,
that the median firm issues approximately 5% more net equity than a firm with
an estimated correlation of zero. Panel B additionally shows that close to 56%
of the estimated ρ are significantly different from zero with 95% confidence.

A unique feature of cash flow models that include correlated permanent
and short-term shocks is that liquidity policies depend crucially on the sign
of the correlation between the two shocks. Our framework enables the testing
of such unique predictions because our estimates of ρ exhibit significant sign
heterogeneity.

3.2 Estimates of σP and σA

The estimates of the volatility parameters in panel A also exhibit significant
variation across groups. The median estimated permanent shock volatility,
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σ̂P , is 65.1%. The total standard deviation of 58% is explained mostly by
within rather than between three-digit SIC variation. Interestingly, since we
only exclude firms with annual asset growth rates above 500%, the estimates
of σ̂P exceed 126% for 25% of the firms. That is, we can estimate and report
the magnitudes of the highest permanent shocks volatilities in the Compustat
universe. The median estimated short-term shocks volatility, σ̂A, is 9.3%.
Estimates also vary significantly within the three-digit SIC classification and
include very high values for 5% of the groups. Note that we can use our
parameter estimates to recover the volatility of transitory shocks by evaluating
σ̂A

√
1− ρ̂2. Because the correlation between short-term and permanent shocks

is not zero for many firms, the median (mean) volatility of transitory shocks
is smaller than for σ̂A: 9.2% (74.4%). The distribution is as skewed as for σ̂A

with an interquartile range between 5.9% and 34%.
We show in Section 3.6 that our estimates imply asset volatilities that are

comparable to those of actual Compustat firms. As shown in Section 4, this
is due to the fact that firms with higher exposure to permanent or transitory
shocks engage more actively in risk management policies (broadly defined),
leading to a significant smoothing of earnings and asset volatilities.

3.3 Estimates of μ

The estimates of μ exhibit an interquartile range from 6.4% to 21.8%, with
an average productivity growth of 14.8%. Almost 50% of the estimates are
significantly different from zero with 95% confidence. These estimates also
show that our grouping procedure captures important differences in latent
productivity growth rates across and within industries.

3.4 Understanding the estimates: Permanent shocks volatilities
Our cash flow model and filtering technique interpret the very high cash flow
volatilities in the data as rather moderate volatilities of permanent and transitory
shocks. Indeed, while the median standard deviations of annual cash flow
growth in our sample is a very high 210%, we obtain median estimates of
65.1% for σP and 9.3% for σA. This inference is explained by the nonlinear
interaction between permanent and transitory shocks in the cash flow model
and the fact that the estimates of σA and σP are positively correlated.

To better understand how our model infers each volatility individually,
consider first the case of σP . Let Zt denote the cross-sectional average
cash flow within each group of N =10 firms, that is, Zt =

∑N
i=1Zi,t /N , for

t =1,...,T =48 years. Let Rt denote the relative change of Zt . This observable
rate is approximately equal to the relative change of the unobservable Xt (with
equality if N →∞, and ρ =0 or σA =0), that is,

Rt ≡ Zt −Zt−1

Zt−1
≈ Xt −Xt−1

Xt−1
. (8)
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Figure 4
Scatter plot of permanent shock volatilities
The x-axis reports the model-based estimated volatilities of permanent shocks, σP in the model in Equations
(1)–(3), for each group of firms in our sample. The y-axis reports the observed time series standard deviations of
Rt in Equation (8) for t =1,...,T , that is, the relative change of group-specific average cash flows. The sample
data covers 10,136 firms, from 1971 to 2018, sorted in 918 groups.

To illustrate, Figure 3 shows Zt superimposed to firm cash flows for a select
group of low-correlation firms (ρ̂ =0.1): The time series trajectory of Zt mimics
the filtered asset productivity X̂t for this group. Absent short-term shocks (εA

i,t =
0), the time series standard deviation of Rt would be approximately equal to
σP , as ZAi,t =Xt in (2). In general, the approximation in (8) implies that the
estimated volatility of permanent shocks is expected to be positively related to,
albeit smaller than, the time series standard deviation of Rt .

Figure 4 shows the scatter plot of the time series sample standard deviations
of Rt against model-inferred volatilities of permanent shocks, σ̂P , for the
918 groups in our sample. As predicted, this figure shows a strong positive
association between standard deviations of Rt and the estimates of σP ,
providing direct evidence that our estimates of σP are capturing the volatility
of permanent shocks. Moreover, standard deviations of Rt are generally larger
than the estimates of σP , meaning that short-term shocks are present in cash
flow data.

3.5 Understanding the estimates: Cash flow shock correlation
To the best of our knowledge, there exist only two previous attempts (i.e.,
Duchin, 2010 and Acharya, Almeida, and Campello, 2007) in the literature
to operationalize the notion of correlation between current cash flow and
investment opportunities. Our estimates are the first to directly target the notion
of hedging needs by way of a deep parameter of a dynamic cash flow model. Our
estimates differ from those in the literature. Most importantly, Duchin (2010)
and Acharya, Almeida, and Campello (2007) report mostly positive correlation
between current cash flow and investment opportunities, whereas we obtain
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Table 5
Estimates of the correlation between permanent and short-term cash flow shocks by industry

Number Standard
Fama-French industry of firms Mean deviation p5 p25 p50 p75 p95

Food 418 −0.01 0.18 −0.19 −0.10 −0.06 0.02 0.58
Mining and Minerals 494 −0.08 0.12 −0.27 −0.15 −0.10 −0.02 0.09
Oil and Petroleum Products 723 −0.06 0.13 −0.23 −0.14 −0.08 −0.02 0.21
Textiles, Apparel and Footware 282 −0.03 0.14 −0.20 −0.13 −0.07 0.08 0.24
Consumer Durables 373 −0.06 0.14 −0.21 −0.12 −0.09 −0.07 0.20
Chemicals 209 −0.04 0.18 −0.17 −0.11 −0.08 −0.04 0.58
Drugs, Soap, Parfumes and Tobacco 330 −0.07 0.16 −0.23 −0.18 −0.08 −0.02 0.17
Construction and Construction Materials 516 −0.04 0.15 −0.17 −0.12 −0.07 −0.02 0.29
Steel Works 192 0.05 0.26 −0.34 −0.13 −0.07 0.32 0.58
Fabricated Products 125 0.01 0.22 −0.24 −0.09 −0.07 0.12 0.58
Machinery and Business Equipment 1,431 −0.06 0.16 −0.26 −0.14 −0.08 −0.03 0.27
Automobiles 179 −0.02 0.10 −0.13 −0.09 −0.06 −0.01 0.30
Transportation 488 −0.05 0.11 −0.17 −0.10 −0.08 −0.05 0.20
Retail Stores 761 −0.04 0.11 −0.20 −0.10 −0.06 −0.01 0.20
Other 3,615 −0.06 0.13 −0.23 −0.13 −0.08 −0.04 0.16

This table summarizes the distribution of the maximum likelihood estimates of the correlation between permanent
and short-term cash flow shocks, ρ̂. This parameter is estimated, together with the other cash flow model
parameters, for each of the 918 three−digit SIC/cash flow growth groups of firms, using firm-specific cash
flow data from 1971 to 2018. The summaries show the number of firms, and the mean, standard deviations, and
percentiles p5, p25, p50, p75, and p95 of ρ̂ for all firms in each industry of the 17-industry classification in Fama
and French (1997).

mostly negative estimates of ρ.14 An important reason for these measurement
differences may be that previous proxies assume that a firm’s investment
opportunities are given by its industry mean or median R&D expense. Our
approach does not require a proxy for the state of industry technology based
on a policy variable. We are also agnostic about which firm may lead the
state of technology in the industry. Under the mild assumption that technology
is common to a group of only 10 firms, we find significant variation in ρ̂

within three-digit SIC classification, with an important proportion of negative
estimates—that is, high hedging needs.

An important question is which industry or firm characteristics are associated
with variation in the estimates of ρ, with the objective to understand the deeper
differences across firms that are captured by our estimates. Indeed, the sign and
magnitude of shock correlations may be a technological characteristic intrinsic
to each industry. For example, Froot, Scharfstein, and Stein (1993) conjecture
that technologies requiring different degrees of operating leverage may lead
to different sensitivities of investment opportunities to demand shocks and,
therefore, different hedging needs.

Table 5 explores these conjectures. The table shows that the distributions
of the estimates of ρ across all the 17 Fama–French industries (FF17) are

14 Duchin (2010) reports a median cash-flow-investment opportunities correlation of 0.25, i.e., a large majority of
firms with a positive correlation and, hence, low hedging needs. Acharya, Almeida, and Campello (2007) do not
report a summary, but one can infer that about 39% of firm-year observations have a correlation higher than 0.2
(the “Low hedging needs” subsample). Although not the focus of their paper, Chang et al. (2014) report a negative
realized correlation of −0.21 between the trend and cycle components of cash flow, although theoretically their
BN decomposition assumes a correlation of −1.
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Figure 5
Estimates of the correlation between permanent and short-term cash flow shocks
This figure presents the box plots of the maximum likelihood estimates of the correlation coefficient, ρ, in the
cash flow model of Equations (1)–(3) for all firms within each of the 17 industries defined by Fama and French
(1997). The sample data cover 10,136 firms, from 1971 to 2018.

remarkably similar: All of the medians are negative, ranging between −0.10
and −0.06. Except for four FF17 industries, fewer than 25% of the firms in
each industry have a positive ρ. However, at least 5% of firms in each FF17
industry have a positive ρ. For most industries, there exist small groups of firms
with significantly high positive estimates of ρ (Figure 5). In sum, the estimates
of ρ, which have been obtained independently for small groups of firms within
each industry, have very similar distributions across different industries.

Next, we ask whether the estimated correlations are associated with policy
choices and outcome variables within each industry. Table 6 reports the average
Spearman’s rank correlation coefficients between the estimates of ρ and
variables capturing risk choices and risk measures. All ranks and correlations
are computed annually by industry and reported as an average over all industry-
years. We compute the rank correlations for different industry definitions: three-
and four-digit SIC codes, and the 17 Fama–French industries.

Table 6 highlights several interesting results. First, firms that are naturally
hedged due to a positive shock correlation tend both to choose riskier policies
and to have lower overall risk than other firms. Notably, the within-industry
comparisons reveal that firms with the highest estimated shock correlations
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Table 6
Cash flow risk parameters: Within-industry comparisons

ρ̂ σ̂A σ̂P
SIC3 SIC4 FF17 SIC3 SIC4 FF17 SIC3 SIC4 FF17

1. Risk choices
Capital-to-labor ratio 0.74 0.68 0.65 −0.07 −0.08 0.17 −0.13 −0.14 0.09
Operating leverage 0.73 0.66 0.63 −0.25 −0.25 −0.59 −0.17 −0.18 −0.49
Total debt-to-assets 0.76 0.70 0.67 −0.36 −0.33 −0.61 −0.47 −0.45 −0.65
Acquisitions-to-assets 0.13 0.11 −0.23 −0.08 −0.07 0.10 −0.16 −0.16 0.04
2. Risk outcomes
Equity return volatility −0.16 −0.12 −0.43 0.56 0.52 0.61 0.71 0.68 0.63
Asset return volatility −0.14 −0.10 −0.45 0.62 0.58 0.66 0.77 0.76 0.70
Distance to default 0.74 0.67 0.66 −0.07 −0.15 0.00 −0.27 −0.33 −0.15
Loans maturity −0.02 0.00 0.22 −0.30 −0.27 −0.24 −0.42 −0.40 −0.20
Loans spread −0.02 −0.05 −0.23 0.22 0.26 −0.05 0.26 0.30 0.04

This table shows the within-industry Spearman’s rank correlation between each of the firm characteristics listed
and the estimates of the operating earnings’ risk parameters: the volatilities of permanent shocks (σP ), short-term
shocks (σA), and their correlation, ρ̂. The within-industry rank correlations are the result of sorting all firms within
each industry by each parameter and each characteristic. Industries are defined using several classifications: three-
and four-digit SIC codes (SIC3, SIC4), and the 17-industry classification in Fama and French (1997) (FF17). The
risk parameters are estimated, together with the other cash flow model parameters, for each of the 918 three-digit
SIC/cash flow growth groups of firms, using firm-specific cash flow data from 1971 to 2018. Capital-to-labor
ratio is defined as Net PPE divided by the Number of Employees; Operating leverage is SG&A plus Costs of
Goods Sold divided by Total Assets; Total debt-to-assets is Short-term debt plus Long-term debt divided by
Total Assets; Acquisitions-to-Assets is the total value of Acquisitions in the year divided by Total Assets. Equity
return volatility is the annualized standard deviation of daily stock returns; Asset return volatility and Distance
to default are calculated using the Bharath and Shumway (2008) method. Loans maturity and Loans spread are
the average maturities and yield spreads, respectively, of all of the sample firms’ outstanding loans in Dealscan.

tend to have the largest capital-to-labor ratios, operating leverage, debt-to-
asset ratios, and acquisition-to-asset ratios within their industry. Yet, despite
these riskier policy choices, these firms also tend to have lower default risk
(as measured using Bharath and Shumway’s 2008 distance to default), lower
loan spreads (despite higher loan maturities), lower equity volatility, and
lower asset volatility. The results are robust to fine (SIC3, SIC4) or broad
industry definitions (FF17). Second, firms with higher exposure to permanent
or transitory shocks choose more conservative policies but have higher overall
risk. This again applies to all the policy choices and risk measures we look at
and to all industry definitions. Importantly, while Table 6 is mostly concerned
with correlations, Section 4 goes one step further by showing how our deep
parameter estimates can explain the dynamics of liquidity management.

3.6 Empirical versus implied asset return volatilities
An important question is whether our estimates of the characteristics of cash
flow shocks are meaningful. This section employs these estimates in a setting
that is independent from the estimation procedure and shows that the estimated
parameters imply asset return volatilities that match the actual asset return
volatilities of the firms in our sample. Importantly, empirical asset return
volatilities are not used in the estimation of cash flow characteristics. Equally
importantly, cash flow characteristics have been estimated using cash flow
data from operating earnings, without imposing any model restriction about
corporate policies.
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Table 7
Model-implied asset volatilities

N Mean Stdev p5 p25 p50 p75 p95
Empirical asset return volatility 703 0.476 0.155 0.270 0.358 0.447 0.584 0.740
Model-implied asset return volatility

Baseline parameters 703 0.559 0.317 0.166 0.307 0.495 0.716 1.340
Baseline and r =0.05 555 0.588 0.386 0.143 0.296 0.490 0.761 1.570
Baseline and �=0.005 701 0.538 0.304 0.161 0.301 0.477 0.679 1.288
Baseline and ξT =ξP =0.6 845 0.491 0.241 0.177 0.295 0.448 0.626 1.041

This table presents a comparison of the distributions of empirical and model-implied asset volatilities. The
volatilities are estimated for each of the 918 three-digit SIC/cash flow growth groups of firms. The empirical asset
return volatilities are estimated as weighted averages of equity and debt return volatilities following the approach
in Bharath and Shumway (2008) using daily stock returns. Model-implied asset volatilities are calculated using
the model of Décamps et al. (2017) (see Appendix C) and the estimated cash flow parameters reported in Table
4. The remaining parameters are r =0.08, λ=0.02, p=1.06, �=0.002, ηP =ηT =0.4, and ξT =ξP =0.4. Model-
implied asset volatilities are winsorized at p5 and p95. The descriptive statistics are: number of observations (N),
mean, standard deviation, and the percentiles p5, p25, p50, p75, and p95.

To compute the model-implied asset return volatilities, we employ the model
of Décamps et al. (2017) presented in Appendix C. The model uses the
(continuous-time version of the) cash flow model described by Equations (1)–
(3) and solves for optimal financing and liquidity policies and firm value. It thus
quantitatively maps the cash flow parameters (μ, σA, σP , and ρ) to asset return
volatility. We calculate asset return volatilities at the group level, consistently
with the level of granularity of the estimation of cash flow parameters. The
empirical asset return volatilities are estimated as weighted averages of equity
and debt return volatilities following the approach in Bharath and Shumway
(2008) using daily stock returns. Model-implied volatilities are averages of all
firm-level volatilities within a group using the estimated cash flow parameters
reported in Table 4 for each group of firms. Details are presented in Appendix C.
It should be noted that the exercise we conduct here is necessarily a joint test of
the estimates of the characteristics of cash flow shocks as well as of the assump-
tions of the corporate liquidity management model of Décamps et al. (2017).

Table 7 reports the empirical and model-implied asset return volatilities.
The average and median empirical asset return volatilities are 0.476 and 0.447,
respectively. In the baseline case, the model-implied volatilities are sightly
higher, at 0.559 and 0.495, respectively, but very close to the empirical ones.
It is remarkable that model-implied asset return volatilities appear to match
actual asset return volatilities that were not used during the estimation process.
Additional rows for model-implied distributions in Table 7 present calculations
based on alternative model parameters. The results show that the similarity
between the empirical and model-implied distributions is robust and driven
by the estimates of the parameters of the cash flow dynamics rather than the
assumed values for the remaining parameters.

4. Understanding Liquidity Management

This section shows how our deep parameter estimates can be used to improve
our understanding of corporate policies. Because the estimated parameters
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characterize cash flow risk, it is natural to explore their effects on policy
choices that increase the resilience of firms to cash flow shocks, such as liquidity
management. Recent dynamic liquidity management models predict that firms
build up cash reserves toward their target level either by retaining earnings or by
raising outside equity and keeping (part of) the proceeds in cash reserves (see,
e.g. Bolton, Chen, and Wang, 2011; Bolton, Chen, and Wang, 2013; Décamps
et al., 2017). In our empirical analysis, we thus focus on these two separate
mechanisms to manage cash reserves. In the first part of the section, we use our
estimates to address the debate on the sign of the cash flow sensitivity of cash
savings. In the second and third parts of the section, we demonstrate how our
estimates of cash flow risk parameters relate to firms’ decisions to respectively
issue equity or debt to rebuild cash buffers.

4.1 Cash savings
One way for firms to increase their cash reserves, and thus their resilience to
shocks, is to retain part of their earnings. There is considerable debate in the
literature as to whether the sign of the cash flow sensitivity of cash is positive
or negative. In an influential paper, Almeida, Campello, and Weisbach (2004)
theoretically argue and provide evidence that the sensitivity is positive, if the
firm is financially constrained, or zero. Riddick and Whited (2009), by contrast,
show that it can be negative if productivity shocks are sufficiently persistent.
Correcting for measurement error in Tobin’s q, they find a negative average
sensitivity. Décamps et al. (2017) sharpen the prediction in their dynamic model,
in which the cash flow sensitivity of cash is proportional to ρ× σP

σA
. That is, they

demonstrate that the sign of the cash flow sensitivity of cash is equal to the sign
of ρ and that its absolute value should be higher for higher ratios of σP /σA.15

Using our parameter estimates, we can directly test this prediction and address
this debate.

To analyze how the cash flow sensitivity of savings depends on hedging needs
and the volatilities of cash flow shocks, we estimate the cash flow sensitivity
of cash over several subsamples formed using our estimates of ρ and σP /σA.
We first partition our sample based on the estimates ρ̂. Because of estimation
error in ρ̂, we do not choose zero as the exact switching threshold of the cash
flow sensitivity. Instead, we perform the tests over the subsamples of firms
with ρ̂i ≤−0.03 (covering 73% of our sample firms) and ρ̂i ≥0.03 (covering
an additional 16% of our sample firms). For robustness, we also perform the
tests over the subsamples ρ̂i ≤−0.02 and ρ̂i ≥0.02, covering 92% of our sample
firms.

15 The intuition for this result builds on the observation that higher productivity leads to a higher marginal value
of cash and thus an increased propensity to save. In firms with positive ρ, a positive cash flow shock coincides
on average with a positive productivity shock and leads to increased cash savings. Thus, positive ρ is associated
with a positive cash flow sensitivity of cash. The opposite occurs for negative ρ. When σP is large relative to
σA, then shocks to the propensity to save cash (proportional to productivity shocks and σP ) are large relative to
cash flow shocks (proportional to σA).
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Sensitivity sign differences would be most clearly detected among firms with
higher absolute sensitivities. Hence, we estimate the cash flow sensitivities of
cash over increasingly restrictive subsamples based on the distribution of the
ratio σP /σA, with values above the median, the 60th percentile, or the 70th
percentile. The results are robust to measurements in the top tercile or quartile.
For each of the resulting six subsamples (combining two sets of values for ρ̂

and three sets for σ̂P /σ̂P ), we estimate the cash savings regression in Almeida,
Campello, and Weisbach (2004) and Riddick and Whited (2009):

Cash savingsi,t =β0 +δt +βCF ×Cash flow-to-assetsi,t +βControls

×Controlsi,t−1 +ui,t (9)

in which Cash savings is the yearly change in the stock of cash divided by total
assets. Control variables include the Market-to-book ratio and ln(Total assets).

Riddick and Whited (2009) note that this cash savings regression includes
the Market-to-book ratio, i.e., average q, as a proxy for marginal q. As a result
of measurement error in this variable, the OLS estimator of the propensity to
save is biased toward zero. Consistency is achieved by additionally matching
higher moments of the joint distribution of the dependent variable, Cash
savings, and average q. Therefore, we follow Riddick and Whited (2009)
and estimate the propensity to save using the fourth-order linear cumulants
estimator (LC4) of Erickson, Jiang, and Whited (2014). Panel A of Table 8
presents these estimates. In follow-up research, Almeida, Campello, and Galvao
(2010) discuss conditions under which instrumental variables estimators may
be more robust and efficient than high-order moments-based estimators, such
as LC4. We therefore also estimate Equation (9) using the dynamic panel data
GMM estimator of Arellano and Bond (1991) (to address the measurement
error problem in average q), implemented exactly as in Almeida, Campello,
and Galvao (2010). Panel B of Table 8 presents the results.

Panel A of Table 8 shows that the estimated sensitivity, βCF , is negative and
statistically significant when ρ̂i ≤−0.03 but positive and statistically significant
when ρ̂i ≥0.03. The estimated sensitivity remains negative for ρ̂i ≤−0.02 and
positive for ρ̂i ≥0.02, confirming that the switching of sign in the propensity to
save is not driven by observations when ρ̂ may be close to zero. Remarkably,
the estimated sensitivity, βCF , exhibits the predicted sign switch for all 12 sets
of test partitions. That is, we find that hedging needs (i.e., ρ) are a defining
feature of the cash flow sensitivity of cash. As in panel A, the results in panel
B show that the sign of the cash flow sensitivity of savings is determined by
the sign of our estimate of ρ, verifying one of the unique predictions following
from having correlated short-term and permanent cash flow shocks.16

16 Estimation by OLS yields the same qualitative results: the sign of the propensity to save equals the sign of ρ̂.
Confirming attenuation bias, the OLS estimates are smaller in magnitude than the LC4 or GMM-AB. We also
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Table 8
Savings sensitivity of cash flow and cash flow shocks

A. LC4 estimator

Subsamples by values of
σ̂P
σ̂A

: Subsamples by values of
σ̂P
σ̂A

:

Above Above Above Above Above Above
Subsamples by ρ̂: 50% 60% 70% Subsamples by ρ̂: 50% 60% 70%

ρ̂i ≤−0.03 −0.169∗∗∗ −0.193∗∗∗ −0.194∗∗∗ ρ̂i ≤−0.02 −0.172∗∗∗ −0.196∗∗∗ −0.199∗∗∗
(0.022) (0.025) (0.028) (0.022) (0.025) (0.028)
[55,734] [44,480] [31,723] [57,377] [46,123] [33,366]

ρ̂i ≥0.03 0.122∗∗∗ 0.114∗∗∗ 0.123∗∗∗ ρ̂i ≥0.02 0.105∗∗∗ 0.098∗∗∗ 0.104∗∗∗
(0.035) (0.036) (0.038) (0.029) (0.031) (0.033)
[20,842] [15,713] [13,079] [21,758] [16,629] [13,546]

B. AB-GMM estimator

ρ̂i ≤−0.03 −0.043∗∗∗ −0.042∗∗∗ −0.029∗∗∗ ρ̂i ≤−0.02 −0.045∗∗∗ −0.044∗∗∗ −0.033∗∗∗
(0.006) (0.007) (0.008) (0.006) (0.007) (0.008)
[48,228] [38,372] [27,279] [49,646] [39,790] [28,697]

ρ̂i ≥0.03 0.053∗∗∗ 0.039∗∗∗ 0.047∗∗∗ ρ̂i ≥0.02 0.051∗∗∗ 0.037∗∗∗ 0.047∗∗∗
(0.009) (0.010) (0.011) (0.008) (0.010) (0.011)
[18,144] [13,688] [11,393] [18,929] [14,473] [11,783]

This table presents estimates of the sensitivity of cash savings to cash flow, which are obtained from the slope
coefficient of the regression of the yearly change in the stock of cash divided by total assets (Cash savings) on
the firm’s Cash flow-to-assets. Control variables include the lagged logarithm of Total assets and Market-to-book
ratio. The sample period is from 1971 to 2018. The data are sorted and classified into subsamples according to
the ratio σ̂P /σ̂A, and ρ̂, which are the ratio of the estimated volatilities of and correlations between permanent
and short-term cash flow shocks, respectively, common to all firms in the same three-digit SIC3/cash flow growth
group. The coefficients in panel A are estimated using the fourth-order linear cumulants estimator (LC4) following
Erickson, Jiang, and Whited (2014). In panel B, the coefficients are computed using the GMM dynamic panel
data estimator proposed by Arellano and Bond (1991), following the implementation of Almeida, Campello, and
Galvao (2010), using the first and second lags of the Market-to-book ratio as an instrument (AB-GMM). In both
cases, standard errors (in parentheses) are computed using the optimal GMM weighting matrix. Please refer to
Table 1 for the definition of all the variables.∗p<.1, ∗∗p<.05, ∗∗∗p<.01

4.2 Equity issues
Another way for firms to replenish cash reserves is to raise outside funds by
issuing equity, as empirically shown by Kim and Weisbach (2008) or McLean
(2011). Issuance costs of securities generally deter firms from continuously
raising funds to be at their target cash level. Instead, firms remain inactive
(away from their target) for long spells until the benefits of raising funds to
increase cash reserves outweigh the costs. Testing dynamic liquidity models
thus requires distinguishing points at which firms are at (or move to) their
target level of cash reserves from points at which they are not. To isolate
such optimality points, we examine periods when firms simultaneously raise
outside equity and increase their cash reserves. The optimality of such
increases in cash reserves follows directly from dynamic inventory models
because these refinancing points reflect optimal liquidity choices (see, e.g.,

explore robustness to using the OLS-IV estimator of Biorn (2000), again implemented exactly as in Almeida,
Campello, and Galvao (2010). We also obtain the sign reversion result, if with less precision for the subsample
with positive ρ estimates. Quantitatively, the magnitudes of the sensitivities under this estimator are also higher
than OLS. Our results are also robust to using lagged instead of contemporaneous cash flow-to-assets as a
regressor. All the results are included in Section 4 of the Internet Appendix.
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Bolton, Chen, and Wang, 2011 or Décamps et al., 2017). Additionally, and as
discussed in Danis, Rettl, and Whited (2014), “large decisions likely follow
considerable deliberation, so it is hard to imagine that managers view these
adjustments as suboptimal.”

Dynamic liquidity management models predict not only that firms will
adjust their cash buffer infrequently but also that the frequency and size of the
adjustments should be related to cash flow risk characteristics. For instance,
theory predicts that firms with high permanent or transitory shock volatility
should hold, on average, larger cash reserves and issue larger amounts of equity.
In addition, they should raise external funds more frequently. By contrast, firms
with a high correlation between permanent and short-term cash flow shocks,
which are naturally hedged, should hold smaller cash reserves and issue smaller
amounts of equity, and do so less frequently.17

To analyze the relation between the estimated cash flow risk parameters (ρ̂,
σ̂P , and σ̂A) and equity issuance, we use a standard liquidity regression model
(as in, e.g., McLean, 2011) that we augment with our estimated parameters:

Yi,t =β0 +δt +γj +βρ × ρ̂g +βσP
× σ̂P,g

+βσA
× σ̂A,g +βControls ×Controlsi,t−1 +ui,t . (10)

We use the subscripts i for firms, g for groups of firms, and t for years. The
dependent variable is either (i) gross equity issues scaled by lagged assets
(Gross equity issuance) as in McLean (2011), (ii) gross equity issuance minus
dividends and share repurchases scaled by lagged assets (Net equity issuance),
(iii) a dummy variable equal to one if Gross equity issuance is larger than 5%,
and zero otherwise (Equity issuance dummy), or (iv) a dummy variable equal
to one if Net equity issuance is larger than 5%, and zero otherwise (Net equity
issuance dummy). To capture the instances when firms are likely to channel
the proceeds from equity issues to cash reserves, we estimate these regressions
using the subsample of firm-years where firms experience a positive change in
the cash-to-asset ratio (the sample median of the change of cash-to-asset ratio
is zero) in that year. The results are robust to restricting the sample to firm-years
in which the change in the cash-to-asset ratio is in the top tercile or in the top
quartile of the change of the cash-to-asset sample distribution.

As in Bates, Kahle, and Stulz (2009), we control for the lagged Industry cash
flow volatility, which varies yearly at the two-digit SIC industry, for firms’
growth opportunities with the residuals of the lagged market-to-book ratio

17 These firms have low hedging needs because low (high) short-term cash flows tend to occur only when productivity
is declining (improving) (see, e.g., Froot, Scharfstein, and Stein, 1993; Morellec and Smith, 2007; or Décamps
et al., 2017). The type of analysis that relates cash holdings to hedging needs has precedents in the literature,
such as Acharya, Almeida, and Campello (2007) and Duchin (2010). Our analysis is unique because it uses
estimated deep parameters of a canonical cash flow process instead of relying on proxies for cash flow volatility
and hedging needs to explain corporate cash policy. Our paper also differs from prior work because of its focus
on specific refinancing times when theory is more likely to hold.
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(Market-to-book ratio), for lagged cash flow (Cash flow-to-assets ratio), and
for lagged firm size (ln(Total assets)).18 The results are robust to the inclusion
of other control variables such as net working capital, capital expenditures,
R&D, leverage, and dividends. We include year fixed effects (δt ) to control
for time-specific shocks that affect all firms. Because our estimates of ρ, σP ,
and σA are constant over time (as assumed in the theoretical literature) but
vary across the 918 groups used for the cash flow model estimation, we cannot
include firm fixed effects in these regressions. However, the parameter estimates
exhibit substantial within-industry variation. We therefore include two-digit
SIC industry fixed effects (γj ) to absorb time-invariant industry effects. Because
Equation (10) uses estimates of ρ, σP , and σA, we calculate the standard errors
conservatively by bootstrapping the standard errors and by clustering at the
three-digit SIC level.

Table 9 presents the results. Columns 1 and 2 show the results for Gross equity
issuance. The estimates of βρ are negative and significantly different from
zero in both columns, consistent with the predictions of liquidity management
models. The estimates are also economically significant. A one-sample-
standard-deviation increase in the estimated correlation between short-term and
permanent shocks (ρ̂) is associated with a decrease in Gross equity issuance
of 6.2% relative to the sample mean. That is, firms with high hedging needs
issue significantly larger amounts of equity. In columns 3 and 4, the dependent
variable is the Gross equity issuance dummy. The estimates of βρ are also
negative and statistically significant, suggesting that firms with high hedging
needs not only issue larger amounts of equity, but do so more frequently. We
obtain very similar results using Net equity issuance (columns 5 and 6) and Net
equity issuance dummy (columns 7 and 8). To our knowledge, our paper is the
first that relates hedging needs to the firms’ equity issuance activity.

All eight columns also show a positive and significant relation between equity
issues (gross and net, size and frequency) and permanent cash flow shocks
volatility. The economic magnitudes are sizable. For example, in column 1, a
one-sample-standard-deviation increase in the estimated permanent volatility
(σ̂P ) is associated with an increase in Gross equity issuance of 13.7% relative
to the sample mean. In six of the eight columns, the short-term cash flow
shocks volatility is also positively associated with equity issues. The economic
magnitudes, however, are smaller when compared with permanent cash flow
shocks volatility. Our tests therefore suggest that permanent cash flow shocks
are more important than transitory cash flow shocks in explaining the cross-
sectional variation in equity issuance activity. Our findings for cash flow
volatility are consistent with those in McLean (2011), who shows that firms

18 Controlling for the market-to-book ratio, which is typical for such regressions, is problematic in our context
because, in theory, Tobin’s q is a function of the cash flow shock volatilities, their correlation, and the growth rate.
To address this problem, all specifications control instead for the residuals of the regression of Market-to-Book
ratio on ρ̂, σ̂P , σ̂A, and μ̂.
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issue equity to replenish cash reserves for precautionary reasons. However, we
note that Industry cash flow volatility is not systematically related to equity
issuance activity. That is, the variation in cash flow risk explained by our
estimates of the three deep parameters subsumes and improves the explanatory
power of the traditional proxy. Finally, firm size and the cash flow-to-assets ratio
are negatively related to equity issuance activity, while the market-to-book ratio
is positively related.

Overall, our cash flow risk parameter estimates are related to equity issuance
as predicted by theory. Firms that are naturally hedged (high ρ firms) issue
less equity and do so less frequently. Our findings also shed new light on the
relative importance of permanent and short-term shocks for liquidity policies.
Notably, permanent cash flow shocks volatility seems to have economically
larger effects on equity issues than short-term shocks volatility.

4.3 Debt issues
In models of liquidity management, firms increase their cash holdings either by
retaining earnings or by issuing equity (see, e.g., Décamps et al., 2011 or Bolton,
Chen, and Wang, 2011). During the recent COVID crisis, a number of firms
have issued long-term debt to increase their cash reserves (as documented, for
instance, in Acharya and Steffen, 2020), following a massive negative cash flow
shock combined with frozen equity markets. A key difference between debt and
equity is that the former increases solvency risk and introduces a constant cash
flow drain (due to the interest payments), which increases expected costs of
refinancing (by increasing the refinancing frequency) and the optimal level of
precautionary cash reserves. This suggests that debt may not be the financing
vehicle of choice for managing cash reserves. Ultimately, however, whether
firms use debt as a liquidity management tool is an empirical question.

The evidence so far rejects the possibility that debt may be used as a substitute
for equity issuance in order to save cash outside of crisis periods. McLean
(2011), for example, finds that, between 1971 and 2008, an extra dollar of net
debt issuance in a fiscal year is associated with an increase of 2 cents in cash
reserves at the end of the year. In comparison, an extra dollar of equity issued
in a fiscal year is associated with an increase of 43 cents in cash reserves at the
end of the year.19

Our estimates can help answer whether debt-financed cash savings policies,
such as the response to the COVID shock, are common or an exception to the
norm. For that purpose, we explore the joint determination of equity and debt

19 We have replicated McLean’s result and found that this result continues to hold for the updated sample running
until 2018 or for the subsample of firm-years in which the change to the cash balance is positive. We have also
reestimated the McLean (2011) model but in a system of seemingly unrelated regressions, using our estimates
of cash flow risk as instruments for equity and debt issuance policies. In this case, we have found an even higher
savings rate following equity issues, and a negative and insignificant savings rate for debt issues. These results
are presented in Section 3 of the Internet Appendix. Altogether, these results suggest that debt is not used as a
liquidity management tool by most firms.
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issuance as a function of our estimated cash flow risk parameters. Table 10
shows the results of estimating Equation (10), replacing the dependent variable
with different definitions of external financing. We find that all the results for
equity issuance, shown in Table 9, are weakened if we define the dependent
variable as “External finance”—that is, the sum of equity and debt issuance
(columns 1–4). Treating each policy separately, and estimating both policies
simultaneously, we confirm earlier results that the frequency and amount of
equity issued decrease with the correlation parameter, ρ, and increase with the
volatility of permanent shocks, σP , (columns 5 and 7), but fail to reject that
long-term debt frequency and volume of issuance are not related to the same
risk parameters (columns 6 and 8). To conclude, using our granular estimates of
the three cash flow risk parameters, we find no evidence that firms treat equity
and debt issuance as substitutes when choosing liquidity policies ex ante as a
function of cash flow risk. Our results suggest that long-term debt may well be
used to add liquidity, but only as an ex post response to severe cash flow shocks
when issuing equity is not possible.

5. Robustness

5.1 Selection issues
Our filter has the ability to deal with missing cash flow observations, and, as
a result, our sample has the maximum possible coverage of Compustat firms
with at least 10 cash flow data points. Additionally, it would be possible to
classify up to 7,239 more firms with eight or nine available observations into
one of our estimation groups. Imputing the group parameter estimates to each
of these firms virtually implies the same distribution of parameter estimates in
a larger sample covering 73% of the firms in the Compustat universe.

Our range of estimates is not representative of the very short-lived firms in
Compustat. We use simulation to try to understand the range of parameter
values that these firms may have. Using the Décamps et al. (2017) model
(summarized in Appendix C), we have confirmed that firms with relatively
high ρ outlast otherwise similar firms with the lowest values of ρ, despite the
fact that high ρ firms may simultaneously experience negative productivity
and short-term shocks. Again, high ρ firms have a natural hedge advantage in
that low (high) short-term cash flows tend to occur only when productivity is
declining (improving) and the firm has lower (higher) needs for cash. Hence,
in all likelihood our sample is excluding firms with the most negative values of
ρ in their respective industries.

5.2 On the cash flow measure
The definitions of “cash flow” in the literature differ depending on whether
the application intends to capture cash flow from operations, which is typically
taken as given, or free cash flow available for savings and distributions to
claimholders, which may include components related to debt or payout policies.
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Table 11
Estimates of the cash flow model parameters under a different operating cash flow definition

A. Parameter estimates

Standard deviation

#est. Mean Total sdb sdw p5 p25 p50 p75 p95

ρ̂ 918 −0.050 0.121 0.090 0.105 −0.208 −0.103 −0.065 −0.028 0.180
σ̂P 918 0.609 0.461 0.287 0.351 0.116 0.217 0.438 0.940 1.491
σ̂A 918 0.412 0.711 0.438 0.614 0.033 0.064 0.097 0.208 2.264
μ̂ 918 0.117 0.081 0.052 0.063 0.012 0.056 0.097 0.172 0.271

B. Values of t-statistics of the parameter estimates

Proportion of
Standard p-values

#est. Mean deviation <.05 <.01 p5 p25 p50 p75 p95

Text space
ρ̂ 918 −19.648 72.458 .411 .380 −96.799 −5.568 −0.718 −0.176 3.189
σ̂P 918 85.926 292.648 .826 .723 1.169 2.436 4.579 29.213 383.462
σ̂A 918 6.001 12.608 .757 .646 0.994 2.003 3.316 5.157 15.295
μ̂ 918 5.990 21.995 .420 .334 −3.552 0.845 1.474 3.108 28.355

C. Correlations between the parameter estimates

ρ̂ σ̂P σ̂A μ̂

ρ̂ 1.000
σ̂P −0.140∗∗∗ 1.000
σ̂A −0.172∗∗∗ 0.471∗∗∗ 1.000
μ̂ 0.035 0.406∗∗∗ 0.093∗∗∗ 1.000

This table summarizes the maximum likelihood estimates of the cash flow model parameters, μ̂,σ̂P ,σ̂A, and
ρ̂ when operating cash flow is defined as EBITDA. The model parameters are estimated for each of the 918
three-digit SIC/cash flow growth groups of firms. The descriptive statistics are: number of model parameter
estimates (#est.); mean; (Total) standard deviation, decomposed into between- (sdb), and within-three-digit SIC
industry (sdw) variation; and the percentiles p5, p25, p50, p75, and p95. The sample covers the period 1971 to
2018.

In line with structural corporate finance, we focus on the cash flow from
operations and our only departure is to subtract changes in working capital,
which is a necessary cash expense to sustain operations.

Table 11 summarizes the parameter estimates if we define operating
cash flows as EBITDA. Without the adjustment for changes in working
capital, the average estimates of the short-term volatility, σA, and long-
term volatility, σP , become smaller. Hence, cross-sectional differences in the
working capital account, contain useful information about short-term (and
long-term) variability. However, the estimates in Table 11 replicate the cash
savings policy implications of Table 8, suggesting that both operating cash
flow definitions agree on the sorting by all three dimensions of cash flow risk.

We note finally that our estimates of cash flow parameters can be used for
many other applications on hypothesis testing or numerical analysis of dynamic
structural corporate finance models. For each application, the researcher may
change the definition of the operating cash flow variable in consistency with
the theory. Naturally, we can apply our filter to any definition as long as we
interpret the parameters correctly in each case.
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5.3 Alternative firm grouping
We perform two additional exercises to assess the appropriateness of our method
of grouping firms with similar cash flow dynamics. First, we reestimate the cash
flow model in Equations (1)–(3) using all firms in each four-digit SIC industry
classification and then test whether these parameter estimates can better explain
cash savings and equity issuance policies. The grouping at the four-digit SIC
level is less granular and, as shown in Table 3, results in much fewer estimation
groups and with less between- but more within-group heterogeneity. As a result,
the distributions of cash flow model parameters estimated at the four-digit SIC
level have similar averages but exhibit less dispersion. The estimates of ρ at
the four-digit SIC level still explain well the sign reversion of the cash flow
sensitivity of savings, but their coefficients in the equity issuance regressions
have a weaker statistical and economic significance, if preserving the right
signs. These results underscore the importance of achieving high granularity
in the estimation of the operating cash flow process.

Second, we conduct a placebo test and reestimate the model parameters
in Equations (1)–(3) for 10,000 groups of 10 firms selected at random and
with replacement from our dataset. Because each firm can belong to several
groups, we (i) match each firm to the parameter estimates of only one randomly
selected group, or (ii) we randomly select 918 of the 10,000 groups such that
no firm belongs to more than one group. Using both approaches, we then test
whether the cross-sectional variation in these estimates explains differences in
equity issuance and cash savings. In both cases, the parameter estimates are not
related to savings or equity issuance policies in any clear and systematic way.
We conclude that our grouping method captures well the inherent similarities
of the firms’ cash flow dynamics and risk.

There exist in the literature other alternatives to classify a firm based on its
product space overlap with others. Such is the case of the text-based product
market similarity classification (TNIC) proposed by Hoberg and Phillips
(2016). Applying the TNIC classification to our analysis is challenging for at
least two reasons. First, this classification is available only since 1988, implying
a loss of 16 years of data or one-third of our sample period. Second, the TNIC
classification is firm-centric, with each firm’s TNIC set changing from one year
to the next as the firm or its competitors enter and exit individual product markets
from its whole product market space. Adopting our model to this data structure
would require different assumptions and estimation procedure. We view this
extension of our framework as an interesting avenue for future research.

6. Conclusion

We estimate a canonical cash flow model that combines productivity shocks,
which have permanent effects, and short-term cash flow shocks, which may
be purely transitory or correlated with permanent shocks. Efficient estimation
of this model is achieved with a high level of granularity for a large fraction
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of the Compustat universe since the 1970s. Estimates of the model parameters
provide a rich summary of a given firm’s cash flow risk, as captured by its
exposure to permanent and short-term shocks and the correlation between
these shocks. The estimated correlation between permanent and short-term
shocks, a key parameter that summarizes a firm’s hedging needs, is a powerful
indicator of within-industry differences in risk taking. In addition, the sign
of this correlation determines the cash flow sensitivity of cash, as predicted
by theory. The estimates of short- and long-term shock volatilities and of the
correlation between shocks explain corporate liquidity management policies
better than usual risk proxies.

Our empirical analysis is based on a cash flow model that assumes constant
risk parameters and ignores potential feedback effects of agency conflicts and
financing policies on cash flow dynamics. One way to relax these assumptions
would be to conduct a structural estimation of a richer model with endogenous
financing and investment. This would also potentially allow estimating the
magnitude and heterogeneity of financing and investment frictions. Another
promising avenue for future research would be to adapt our cash flow model and
estimation method to allow for a different structure of transitory and permanent
shocks. One could, for instance, consider that permanent and transitory shocks
follow a factor model. This would require showing that this model is well
identified and that its deep parameters can be estimated accurately with a newly
derived Kalman filter. We leave these promising extensions for future research.

Appendix

Appendix A. Kalman Filter and Maximum Likelihood Estimation
This appendix provides a detailed exposition of the model estimation approach used in Section 2.
We first describe the state space model and then derive the Kalman filter to compute the likelihood
of cash flow data.

A.1 The State Space Model The state space model in Equations (1)–(2) consists of a transition
equation and a measurement equation. The transition equation describes the discrete-time dynamics
of the latent state process, which is the unobserved asset productivity Xt . The measurement equation
describes the relation between the state process and the observed cash flows of firms that share
the same asset productivity. To facilitate the exposition, we use a standard notation in state space
models, and present the model as if missing observations were absent (Appendix B.3 discusses
how we handle missing observations).

Let Xt denote the asset productivity in year t . The transition equation (1) can be rewritten as

Xt =�XXt−1 +ωt , (A1)

where �X =(1+μ), ωt =σP Xt−1ε
P
t and εP

t ∼N (0,1). Thus, ωt ∼N (0,Qt ), where Qt =σ 2
P X2

t−1,
and the error term εP

t is the permanent shock to cash flows.
Let Zi,t denote the cash flows of firm i in year t ,that is, we set Zi,t =Ai,t , and Zt =(Z1,t ,...,ZN,t )′

to be the N ×1 vector collecting the cash flows of the N firms that share the same asset productivity,
where ′ denotes transposition. The measurement equation in (2) can be written in vector form as

Zt =HZXt +ut , (A2)

where the i-th element is Zi,t =Xt +ui,t , ui,t =σAXt−1ε
A
i,t , and εA

i,t ∼N (0,1) is the short-term shock
to cash flows. In (A2), HZ =1, where 1=(1,...,1)′.
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In classic applications of state space models, ut is merely a measurement error of Xt , and it is
assumed to be uncorrelated with Xt . In contrast, because permanent and short-term shocks in model
(1)–(2) are correlated, ut and Xt turn out to be correlated. Specifically, the correlation between ui,t

and Xt is equal to ρ and enters the short-term shock εA
i,t =ρεP

t +
√

1−ρ2εT
i,t , where εT

i,t ∼N (0,1)

is the transitory shock, uncorrelated with εP
t . Thus,

Cov[Xt ,ui,t |Xt−1]=E[ωt ui,t |Xt−1]=E[σP Xt−1ε
P
t σAXt−1ε

A
i,t |Xt−1]=ρσP σAX2

t−1.

Collecting the transitory shocks of the N firms in εT
t =(εT

1,t ,...,ε
T
N,t )

′, the error term ut =

σAXt−1(ρεP
t 1+

√
1−ρ2εT

t )∼N (0,Ωt ), where Ωt =σ 2
AX2

t−1(ρ211′ +(1−ρ)2IN ), and IN is the
N ×N identity matrix.

The correlation between ut and Xt makes the standard Kalman filter biased and inconsistent.
To overcome this issue, we transform the measurement equation as follows:

Zt = HZXt +ut +J (Xt −�XXt−1 −ωt )

= (HZ +J )Xt −J�XXt−1 +ut −Jωt

= H ∗
ZXt +�∗

XXt−1 +u∗
t , (A3)

where H ∗
Z =HZ +J , �∗

X =−J�X , u∗
t =ut −Jωt , and J is a N ×1 vector that will be defined shortly.

In the first equation, the third term on the right-hand side is zero by definition of the transition
equation (A1). This means that the transformed measurement equation (A3) is an exact alternative
representation of the measurement equation (A2). Importantly, the vector J is defined such that
the transformed measurement error u∗

t is uncorrelated with Xt :

Cov[Xt ,u
∗
t |Xt−1]=E[ωt u

∗
t |Xt−1]=E[ωtut |Xt−1]−JE[ω2

t |Xt−1]=0. (A4)

Solving the last equation for J gives J =E[ωtut |Xt−1]/E[ω2
t |Xt−1]. In the state space model

(A1)–(A2), J takes a simple form, that is, J =ρσA/σP 1.
Plugging J in u∗

t clarifies why u∗
t is uncorrelated with Xt in Equation (A3):

u∗
t =ut −Jωt =σAXt−1ε

A
t −ρ

σA

σP

1σP Xt−1ε
P
t =σAXt−1(εA

t −ρ1εP
t )=σAXt−1

√
1−ρ2εT

t ,

where εT
t is by definition uncorrelated with Xt , and we use εA

t =(εA
1,t ,...,ε

A
N,t )

′. The error term u∗
t

is by definition uncorrelated with Xt−1 too.
The transformation of the measurement equation in (A3) can be applied to more general

state space models to handle the correlation between state variables and measurement errors.
For example, if Xt is a k×1 state variable, then J =E[ut ω

′
t |Xt−1]E[ωt ω

′
t |Xt−1]−1, which is an

N ×k matrix. Also, J could be time varying when the conditional expectations are state dependent.
In the signal processing literature, Ma, Wang, and Chen (2010) suggest transforming the

transition equation to account for the correlation between measurement and transition errors in
state space models. We use a different approach and transform the measurement equation which
results in a stable Kalman filter for the state space model in Equations (1)–(2). See Appendix A.5
for details.

A.2 The Generalized Kalman Filter Because the transformed measurement equation (A3)
features Xt−1 in the right-hand side, it is necessary to re-derive the Kalman filter to filter out the
latent state process.

Let X̂t |t−1 =Et−1[Xt ] and Ẑt |t−1 =Et−1[Zt ] denote the expectation of Xt and Zt , respectively,
using information up to and including time t −1, and let Vt |t−1 and Ft |t−1 denote the corresponding
(a priori) error variance and error covariance matrix. Furthermore, let X̂t =Et [Xt ] denote the
expectation of Xt including information at time t , and let Vt denote the (a posteriori) error variance.
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The Kalman filter consists of two steps, that is, prediction and update. In the prediction step,
X̂t |t−1 and Vt |t−1 are given by

X̂t |t−1 =�XX̂t−1 (A5)

Vt |t−1 =�XVt−1�X +Qt . (A6)

and Ẑt |t−1 and Ft |t−1 are in turn given by

Ẑt |t−1 =HZX̂t |t−1 +�∗
XX̂t−1 (A7)

Ft |t−1 =H ∗
ZVt |t−1H

∗
Z

′ +�∗
XVt−1�

∗
X

′ +Ω∗
t . (A8)

Because the transition equation (A1) is standard, X̂t |t−1 and Vt |t−1 take the usual forms in Kalman
filtering. The transformed measurement equation (A3) changes Ẑt |t−1 andFt |t−1 relative to standard
Kalman filtering, with the additional terms in �∗

X .
In the update step, the estimate of the state process Xt is refined based on the difference between

the observed and predicted values of Zt , with X̂t and Vt given by

X̂t =X̂t |t−1 +G′
t (Zt −Ẑt |t−1) (A9)

Vt =Vt |t−1 −2Vt |t−1H
∗
Z

′
Gt +G′

t Ft |t−1Gt , (A10)

where Gt is an N ×1 vector called Kalman gain, which is determined by minimizing Vt with
respect to Gt . Solving the first-order condition ∂Vt /∂G′

t =0 for Gt gives G′
t =Vt |t−1H

∗
Z

′F−1
t |t−1.

This choice of Gt minimizes Vt because ∂2Vt/(∂Gt ∂G′
t )=2Ft |t−1 is positive definite.

Model estimation is achieved by maximizing the log-likelihood of cash flows data of N firms
over T periods with respect to the model parameters μ, σP , σA, and ρ. Specifically, for fixed model
parameters the generalized Kalman filter (A5)–(A10) is run to compute the log-likelihood

T∑
t=1

− 1

2

[
N log(2π )+log|Ft |t−1|+(Zt −Ẑt |t−1)′F−1

t |t−1(Zt −Ẑt |t−1)
]
. (A11)

Model parameters are changed as to increase the value of the log-likelihood, which then requires to
re-running the generalized Kalman filter, and re-computing the log-likelihood.20 The iterative
procedure is repeated until convergence of the numerical likelihood search. As mentioned in
Section 2.2, on a common laptop computer, it takes less than one second to fit the model to a
panel of 10 firm cash flows observed over 46 years.

A.3 Missing Observations Handled with Kalman Filtering A prominent feature of cash flow
data are missing observations. In our panel, 56% of firm-year observations are missing relative
to the full balanced panel. Although our Kalman filter is different from the standard one, missing
values can be handled using the usual method in Kalman filtering; see Section 3 in Shumway and
Stoffer (1982). For completeness we briefly recall the procedure.

Suppose that there are no missing observations in year t . Then, the measurement equation (A3)
holds. That is, Zt collects the cash flows of all the N firms in a year t . Suppose now that the
cash flow data of some firms in year t are missing. The idea is to “select” the components of Zt

corresponding to firms with observed (not missing) cash flow data. This task is achieved by simply
using a matrix St consisting of zeros and ones with dimension Mt ×N , where Mt is the number
of firms with observed cash flow data. To illustrate, consider an extreme and unrealistic case in

20 The starting value of the state process X is set equal to the average of cash flows at t =1, but is then optimized
during the likelihood search.
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which only the cash flow of the first firm in Zt is available in year t . In that case, St =(1,0,...,0)
is a 1×N row vector, Mt =1 and St Zt is the cash flow of that firm. If cash flows of all N firms are
available in year t , then St is a N ×N identity matrix.

The procedure to compute the log-likelihood with missing observations is as follows. First, for
each year t , construct the matrix St based on the position of observed cash flows in Zt . Then, pre-
multiply both sides of equation (A3) by St and use this measurement equation to run the generalized
Kalman filter. Finally, compute the log-likelihood in (A11) replacing N by Mt .

The matrix St is time dependent and needs to be computed for each year t . This time dependence
allows the procedure to accommodate missing observations in different positions of the cash flow
panel as well as entry and exit of firms in the panel.

A.4 Identification of Shock Correlation To illustrate the issue of the identification of shock
correlation, we use a popular model in the corporate finance literature. The model features persistent
and short-term productivity shocks at a firm level. Denote yi,t an observable productivity or cash
flow process for a given firm i,

yi,t =εi,t +σννi,t , (A12)

where εi,t is an AR(1) process, namely εi,t =βεi,t−1 +σηηi,t and 0<β <1 and ση >0. The
process ηi,t ∼ i.i.d.N (0,1) models persistent (or often called long-term) shocks. The process
νi,t ∼ i.i.d.N (0,1) models short-term shocks and σν >0. Both shocks are firm-specific. The usual
assumption in the literature is that these shocks are uncorrelated. We consider instead the case in
which these shocks are correlated, corr[ηi,t ,νi,t ]=ρ. It is perhaps surprising that even observing
an infinite time series of yi,t , the correlation ρ (and other model parameters) cannot be identified.
In what follows, we formally prove this result.21

A time series model is identified when the system of equations, matching population and model-
based autocovariances, can be solved uniquely for the model parameters. The unknowns in this
system are the model parameters. Population autocovariances are (asymptotically) known. Define
the autocovariance function as γ (h)=Cov[yi,t ,yi,t−h], for h=0,1,..., then

γ (0)=
σ 2

η

1−β2
+σ 2

ν +2ρσησν (A13)

γ (h)=βh

[
σ 2

η

1−β2
+ρσησν

]
. (A14)

β can be easily identified from the decay of the autocovariance function γ (h), say from the equation
γ (h2)/γ (h1)=βh2−h1 for h2 >h1 ≥1. It is therefore taken as known in the discussion that follows.
Although there is an infinite number of equations (A14) for h≥1, effectively, (A13)–(A14) is a
system of two equations in three unknowns, ρ,ση,σν , and the model in (A12) is not identified.

To see the lack of identification of the shock correlation, suppose for simplicity that ρ >0.
Solving (A13) for σν (which then admits only one real and positive solution) and plugging this
solution in (A14) gives

γ (h)=βh

⎡
⎣ σ 2

η

1−β2
+ρση

⎛
⎝
√√√√ρ2σ 2

η +

(
γ (0)− σ 2

η

1−β2

)
−ρση

⎞
⎠
⎤
⎦,

which is effectively one equation in two unknowns, ρ and ση . Therefore, ρ and ση are not identified.

21 A proof that the shock correlation in Equations (1)–(3) is not identified when permanent shocks are firm-specific
is beyond the scope of this paper given that the model features a multiplicative, nonstationary process.
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Consider now the model

yi,t =εt +σννi,t (A15)

in which the persistent shock εt =βεt−1 +σηηt is not firm-specific but common across firms, and
is still correlated with the short-term shock, corr[ηt ,νi,t ]=ρ. The persistent shock εt plays the
role of a “systemic factor” for the firms’ productivity. The short-term shock can be decomposed as
νi,t =ρεt +

√
1−ρ2νT

i,t , where νT
i,t is the firm-specific transitory shock, uncorrelated with εt . The

cross-sectional mean, yt , is such that

yt =
1

N

N∑
i=1

yi,t =
1

N

N∑
i=1

(εt +σννi,t )=
1

N

N∑
i=1

(εt +σν (ρεt +
√

1−ρ2νT
i,t ))

and therefore when N →∞, yt =εt (1+ρσν ). The last equation indicates that if, for example, ρ >0,
then firms’ productivity loads more on the systemic factor εt relative to the case when ρ =0.
Importantly, the autocovariances of yt provide additional moment conditions to identify the model
in (A15). In essence, additional information from the cross-section of firms allows to identify the
model and in particular the shock correlation. Denote γ (0)=V [yt ], then

γ (0)=
σ 2

η

1−β2
(1+ρσν )2. (A16)

The moment conditions (A13), (A14), and (A16) provide a system of three equations in three
unknowns, ρ, ση , and σν , to identify the model in (A15). This system can be solved as follows.
Solving (A14) with respect to ρσν and plugging this solution in (A16) gives a quadratic equation in
which ση is the only unknown. Ensuring that only one real and positive solution exists, identifies ση .
The difference between (A13) and (A14) gives

γ (0)− γ (h)

βh
=σ 2

ν +ρσησν . (A17)

Matching the expression of ρσησν from (A17) and from (A14) gives a linear equation in which σ 2
ν

is the only unknown, identifying this parameter. Having identified ση and σν , (A13) can be used
to identify ρ.

In sum, a model in which persistent and short-term shocks are both firm-specific is not
identified. Instead, assuming that persistent shocks are common across firms allows to identify
the shock correlation, because these common shocks would behave like a systemic factor for
firms’ productivity.

Appendix B. Monte Carlo Analysis of Estimation Accuracy
B.1 Comparison with the Standard Kalman Filter To check the accuracy of our estimation
method, we conduct a Monte Carlo simulation. In the cash flow model given by Equations (1)
and (3), we set the parameters ρ, σA, σP , and μ to their respective average estimated values as in
Table 4. We then use the model to simulate 10,000 panels of cash flows. As in our empirical analysis
with Compustat data, each simulated panel consists of the cash flows of 10 firms over 48 years.
For each simulated panel we estimate the model in Equations (1)–(3) using maximum likelihood
with our generalized Kalman filter, as described in Appendix A.2. As a benchmark method, we
also estimate the cash flow model using maximum likelihood with a standard Kalman filter.

The standard filter presumes that the correlation between permanent and short-term cash flow
shocks is zero, and thus delivers no estimate of ρ. As a measure of estimation accuracy, for
each estimated parameter θ̂ = {ρ̂,σ̂A,σ̂P ,μ̂}, we compute the mean square error (MSE), that is,∑10000

j=1 (θ̂j −θ0)2/10000, where θ̂j is the estimate of the parameter θ based on the j -th simulated
panel of cash flows and θ0 is the true parameter value. To compare MSEs across parameters, we
report the relative MSE, that is, the MSE divided by the absolute value of θ0.

3964

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/8/3922/6433686 by Erasm

us U
niversity Library user on 27 Septem

ber 2022



[19:00 5/7/2022 RFS-OP-REVF210147.tex] Page: 3965 3922–3972

Understanding Cash Flow Risk

Underscoring the accuracy of our estimation method, the MSEs of the maximum likelihood
estimates of the parameters μ, σP and σA with the generalized Kalman filter are, respectively,
0.360, 0.085 and 0.106. The MSEs of the maximum likelihood estimation with the standard Kalman
filter are an order of magnitude larger than those with the generalized Kalman filter. The ratios
between the two MSE’s are 2.2, 1.7 and 2.1, respectively. Hence, our method is uniformly more
accurate than maximum likelihood with a standard Kalman filter, often by a large extent. Finally,
the MSE of ρ based on maximum likelihood with the generalized Kalman filter is 0.034, which is
even smaller than the MSEs of the other parameters. As mentioned above, maximum likelihood
with standard Kalman filter provides no estimate of ρ. We also experimented with smaller group
sizes. Estimation results were less accurate.

In sum, the Monte Carlo simulation above shows that maximum likelihood with the generalized
Kalman filter delivers accurate estimates of the cash flow model in Equations (1) and (3) while
outperforming the maximum likelihood estimator with a standard Kalman filter. The latter method is
not suited to handle the correlation between permanent and short-term shocks Equations in (1)–(3).

B.2 Comparison with Ma, Wang, and Chen (2010) Ma, Wang, and Chen (2010) have
introduced a Kalman filter that can account for the correlation between the state variable and
the measurement error. In a classic engineering setting (namely to recover location and velocity
of an object in a one-dimensional motion), they compare their filter to the standard Kalman filter,
which presumes zero correlation between the state variable and measurement error. While for
positive correlations their filter outperforms the standard Kalman filter, they find that for negative
correlations the two filters have a similar degree of inaccuracy. This suggests that their filter may
not be reliable over the full range of possible correlation values.

How do the two filters differ in their construction and in their performance? To compare
the filters, we allow both the state variable Xt and the measurements Zt to be vector-valued.
We first present the approach developed by Ma, Wang, and Chen (2010), and then discuss
our approach, highlighting the difference between the two. In a nutshell, the former approach
rearranges the transition equation by regressing the transition shock on the measurement error.
Our approach follows the “opposite route”: we rearrange the measurement equation by regressing
the measurement error on the transition shock.

In the signal processing literature (see Ma, Wang, and Chen (2010)), the transition equation,
Xt+1 =�XXt +ωt , is rearranged by adding the zero term from the measurement equation, Zt −
HZXt −ut =0, as follows:

Xt+1 =�XXt +ωt

=�XXt +ωt +K(Zt −HZXt −ut )

=(�X −KHZ)Xt +KZt +(ωt −Kut )

=(�X −KHZ)Xt +KZt +ω∗
t ,

where ω∗
t =ωt −Kut is the new transition shock.22 Then K is chosen such that the new transition

shock, ω∗
t , and the measurement error, ut , are uncorrelated

0=Cov[ω∗
t ,u

′
t ]=E[(ωt −Kut )u

′
t ]=E[ωtu

′
t ]−KE[utu

′
t ]

and therefore K =E[ωtu
′
t ](E[utu

′
t ])

−1. That is, ωt is theoretically regressed on ut .
Our approach is to rearrange the measurement equation, Zt =HZXt +ut , by adding the zero

term from the transition equation, Xt −�XXt−1 +ωt =0, as follows:

Zt =HZXt +ut

22 The transition shock of Xt+1 is denoted by ωt . This is merely a convention. The shock ωt is moving the state
variable from Xt to Xt+1 in discrete time.
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=HZXt +ut +J (Xt −�XXt−1 +ωt )

=(HZ +J )Xt −J�XXt−1 +(ut −Jωt )

=H ∗
ZXt +�∗

XXt−1 +u∗
t ,

where u∗
t =ut −Jωt is the new transition shock. J is chosen such that

0=Cov[u∗
t ,ω

′
t ]=E[(ut −Jωt )ω

′
t ]=E[utω

′
t ]−JE[ωtω

′
t ]

and therefore J =E[utω
′
t ](E[ωtω

′
t ])

−1. That is, we theoretically regress ut on ωt to orthogonalize
the measurement error to the transition shock.

The two methods generate two different Kalman filters. For example, the one-step-ahead
prediction of Zt in Ma, Wang, and Chen (2010) is the usual Ẑt |t−1 =HZX̂t |t−1, whereas in our
approach it is Ẑt |t−1 =H ∗

ZX̂t |t−1 +�∗
XX̂t−1, where X̂t−1 is the updated value of the state process

given the available observations up to and including time t −1. This quantity is not present in the
Ma, Wang, and Chen’s (2010) filter (nor in the standard Kalman filter), and changes the inner
workings of the filter (prediction and update steps).

There are two main theoretical differences between our and Ma, Wang, and Chen’s (2010)
filter, and both differences induce a better performance of our filter. First, as mentioned in the
previous paragraph and in contrast to Ma, Wang, and Chen (2010), the updated value X̂t−1 enters
the one-step-ahead prediction of Zt in our filter as Ẑt |t−1 =H ∗

ZX̂t |t−1 +�∗
XX̂t−1. Consequently,

the a posteriori covariance matrix Vt−1 of (Xt−1 −X̂t−1) enters the a priori covariance matrix
Ft |t−1 of the prediction error (Zt −Ẑt |t−1). Relative to the corresponding covariance matrix in Ma,
Wang, and Chen (2010), the covariance matrix Ft |t−1 has an additional term, �∗

XVt−1�
∗
X

′, that
changes the Kalman gain G′

t =Vt |t−1H
∗
Z

′F−1
t |t−1 that in turn changes the update of the latent state

X̂t =X̂t |t−1 +G′
t |t−1(Zt −Ẑt |t−1). Effectively, our filter appears to make a more efficient use of the

available information (observations Zt and filter-based quantities X̂t−1 and Vt−1) to extract the
latent stateXt . Second, in our filter the covariance matrix of the transformed measurement error u∗

t is
diagonal, V [u∗

t ]=σ 2
A(1−ρ2)INX2

t−1, where IN is the N -dimensional identity matrix. In contrast,
the covariance matrix of the measurement error in the Ma, Wang, and Chen’s (2010) filter is a
full matrix, V [ut ]=σ 2

A((1−ρ2)IN +ρ211′)X2
t−1. As a consequence, our filter induces an “efficient

rotation” of the vector-valued measurement error that results in an homoscedastic error covariance
matrix. Because the Kalman filter relies on linear projections (e.g., projecting the measurement
error ut on the transition shock ωt ), the homoscedastic feature of the error covariance matrix allows
to achieve efficiency gains in our filter. Moreover, when the shock correlation ρ approaches +1 or
−1, the variance V [u∗

t ] of the measurement error tends to zero in our filter, increasing the precision
of the filter, whereas that is not the case in Ma, Wang, and Chen’s (2010) filter. Finally, the diagonal
covariance matrix in our filter enhances also the computational efficiency of its inverse, making
the covariance matrix of the prediction error “less singular” in applications.

To compare the performance of the two filters, we run the following Monte Carlo simulation:

1. Fix the parameters of the cash flow model (1)–(2) in the paper.

2. Simulate one panel of cash flows of 10 firms over 50 years.

3. Apply each of the two Kalman filters above to the simulated cash flow panel to extract the
trajectory of the true state process, Xt ,t =1,...,50 (known in simulation).

4. Compute the root mean square error of the filtered trajectory,
√∑50

t=1(Xt −X̂t )2/50, for

each filter, where X̂t is the Kalman-filtered value.

5. Repeat 10,000 times the steps 2 to 4.

Note that we use the true model parameters to apply both filters in step 3. Hence, this simulation
exercise is purely a comparison of the two filters (designed to accommodate the shock correlation),
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as there is no estimation error. We select three different sets of parameter values in step 1, and
repeat 10,000 times steps 2 to 4 for each set of parameters. First, we set the model parameters in
step 1 equal to the median estimates (p50 in Panel A in Table 4). Our filter performs better than
the filter of Ma, Wang, and Chen (2010) 62% of the times in terms of root mean square error.
Although the two filters are the same when ρ =0, the simulation evidence indicates that our filter
is more accurate even for a moderate value of the shock correlation (ρ =−0.076). Second, we set
the parameter values equal to the first quartile estimates (p5 in panel A in Table 4), and find that
our filter outperforms 97% of the times the filter of Ma, Wang, and Chen (2010). In this case, the
shock correlation is equal to ρ =−0.232. Given that most Compustat firms in our sample have a
negative ρ (high hedging needs), we view the high performance of our filter in this setting as an
important benefit. Third, we set the model parameters equal to the third quartile estimates (p95 in
panel A in Table 4), where ρ =0.229. In this case, our filter outperforms the filter of Ma, Wang,
and Chen (2010) 77% of the times. We conclude that our filter is more accurate and can be used
for any value of the shock correlation.

C. Asset Growth Volatilities
This exercise illustrates a numerical application of our decomposition. The purpose is twofold.
First, and as a validation of our results, we ask whether the parameter estimates in Table 4 imply
asset volatilities that are comparable to those of actual Compustat firms. It is not clear this should
be the case: our estimator recovers cash flow parameters from cash flow data only, and does not
impose the restrictions from corporate policies that feed from those parameters to predict asset
values and volatilities. Second, we also test whether our implied asset volatilities are robust, in
the sense that they are not driven by the financing model assumptions but instead by inference
based only on cash flow data, using the model in Equations (1)–(2). As noted by Gorbenko and
Strebulaev (2010), an important limitation of standard EBIT models with only permanent shocks
(e.g., Leland (1994)) is that asset growth volatilities are equal to cash flow volatilities. Hence, this
exercise evaluates the extent to which the cash flow structure with permanent and transitory shocks
helps reconcile the large differences between relatively high cash flow volatilities and the much
more moderate asset volatilities in the data.

C.1 Cash flow model To compute the model-implied asset volatilities, we employ a version of
the model of Décamps et al. (2017). In this continuous time model, operating revenue is subject
to permanent and transitory shocks. Asset productivity X=(Xt )t≥0 is governed by the geometric
Brownian motion

dXt =μXtdt +σP XtdWP
t , (C1)

where μ and σP >0 are constant and WP =(WP
t )t≥0 is a standard Brownian motion. Therefore,

asset productivity is nonstationary and features permanent shocks. In addition to these shocks, cash
flows are subject to short-term shocks. For a given firm, the cash flows dZt are proportional to Xt

but uncertain and governed by
dZt =Xtdt +σAXtdWA

t , (C2)

where σA >0 is constant and WA =(WA
t )t≥0 is a standard Brownian motion. WA and WP can be

correlated with correlation coefficient ρ, in that

E[dWP
t dWA

t ]=ρdt, with ρ ∈ (−1,1). (C3)

The specification for cash flow dynamics in (C1) and (C2) nests those in traditional dynamic
corporate finance models. If σA =0, we obtain the model with time-varying profitability applied
extensively in dynamic capital structure models (see Goldstein, Ju, and Leland 2001; Strebulaev
2007; or Morellec, Nikolov, and Schürhoff 2012) and real-options models (see Abel and Eberly
1994; Carlson, Fisher, and Giammarino 2006; or Morellec and Schürhoff 2011). If μ=σP =0, we
obtain the stationary framework of dynamic agency models (see DeMarzo and Sannikov 2006 or
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DeMarzo et al. 2012) and liquidity management models (see Décamps et al. 2011; Bolton, Chen,
and Wang 2011; or Hugonnier, Malamud, and Morellec 2015).

The transition equation (1) is a simple Euler discretization of Equation (C1). The measurement
equation (2) is related to an Euler discretization of Equation (C2) and it is obtained by setting Zi,t

equal to the cash flow accumulated over year t , for firm i. In (2), Xt−1 and not Xt enters the error
term Pt−1σAεA

i,t for it to have zero mean.
With this specification, the firm’s cash flow over the time interval [t,t +dt] is given by

dZt =Xtdt +σAXt (ρdWP
t +

√
1−ρ2dWT

t ), (C4)

where WT =(WT
t )t≥0 is a Brownian motion independent from WP . This decomposition implies

that short-term cash flow shocks dWA
t consist of transitory shocks dWT

t and permanent shocks
dWP

t .

C.2 Management’s Optimization Problem Short-term shocks expose the firm to potential losses
that can be covered using cash reserves or new equity financing. Specifically, management is
allowed to retain earnings inside the firm and we denote by Mt the firm’s cash holdings at any
time t >0. Cash reserves earn a rate of return r−λ inside the firm, where λ>0 is a cost of holding
liquidity. The firm can also raise additional funds from investors. External equity financing is costly
with a fixed cost φPt and a proportional cost θ . The dynamics of cash reserves are then given by:

dMt =(r−λ)Mtdt +
(
dt +σAρdWP

t +
√

1−ρ2dWT
t

)
Pt +

dEt

θ
−d�t −dLt , (C5)

where Et , �t , and Lt are nondecreasing processes that represents the cumulative gross external
financing, the cumulative fixed cost of financing, and the cumulative dividend paid to shareholders.
Equation (C5) is an accounting identity that shows that cash reserves increase with the interest
earned on cash holdings (first term on the right-hand side), with the firm’s earnings (second term),
and with net external equity (third and fourth terms), and they decrease with payouts (last term).

Management chooses the cash savings/payout and equity financing policies to maximize
shareholder value. There are two state variables for the firm’s optimization problem: Profitability
Xt and the cash balance Mt . We can thus write this problem as

V (x,m)=sup
L,E

Ep,m

[∫ ∞

0
e−rt (dLt −dEt )

]
, (C6)

where x and m denote realizations of X and M at time t =0. Décamps et al. (2017) show that
there exists a unique solution to this optimization problem and characterize firm value and optimal
policies in their Proposition 1.

C.3 Implied Volatilities To compute the model-implied asset volatilities, we use the cash flow
process estimated previously and solve for optimal financing and liquidity policies and firm value.
We thus quantitatively link the cash flow parameters (μ, σA, σP , and ρ) to asset volatility.

We calculate asset volatilities at the group level, consistently with the level of granularity of
the estimation of cash flow parameters. The empirical asset volatilities are estimated as weighted
averages of equity and debt volatilities following the approach in Bharath and Shumway (2008)
using daily stock returns. Model-implied volatilities are averages of all firm-level volatilities within
a group using the estimated cash flow parameters reported in Table 4 for each group of firms.
We drop groups of firms with insufficient stock price data or where the model cannot be solved
given parameter values, winsorizing actual and predicted asset volatilities at the 5th and 95th
percentiles.23

23 Remaining parameter values follow Décamps et al. (2017) and Bolton, Chen, and Wang (2013): the risk-free
rate r =0.08, the carry cost of cash λ=0.02, proportional and fixed equity issuance costs p=1.06 and �=0.002,
market price of risk of temporary and permanent shocks ηT =ηP =0.4, and the correlation of temporary and
permanent shocks with market shocks ξT =ξP =0.4; cash holdings are assumed at the target level.
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Table 7 presents a comparison of the empirical and model-implied asset volatilities. The average
and median empirical asset volatilities are 0.476 and 0.447, respectively. In the baseline case, the
model-implied volatilities are sightly higher, at 0.559 and 0.495, respectively, but very close to
the empirical ones. It is remarkable that model-implied asset volatilities appear to match actual
asset volatilities that were not used during the estimation process. While similar at the center
of the distribution, the model-implied volatilities tend to be somewhat more extreme in the tails
compared to the empirical ones. This suggests that there could be some forces beyond those in
the Décamps et al. (2017) model moderating the volatility of real firms’ asset values. Additional
rows for model-implied distributions in Table 7 present calculations based on departures from the
baseline parameters. The results show that the similarity between the empirical and model-implied
distributions is robust and driven by the estimates of the parameters of the cash flow dynamics
rather than the assumed values for the remaining parameters.
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